The filamentous γ-prefoldin chaperone is not essential for growth and thermal adaptation in Methanocaldococcus jannaschii

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Hee-Jeong Cha, Dominic J. Glover, Douglas S. Clark
{"title":"The filamentous γ-prefoldin chaperone is not essential for growth and thermal adaptation in Methanocaldococcus jannaschii","authors":"Hee-Jeong Cha,&nbsp;Dominic J. Glover,&nbsp;Douglas S. Clark","doi":"10.1111/1462-2920.16705","DOIUrl":null,"url":null,"abstract":"<p>Elucidating the role of molecular chaperones in extremely thermophilic archaea, including the gamma prefoldin (γPFD) in the deep-sea methanogen <i>Methanocaldococcus jannaschii</i>, is integral to understanding microbial adaptation to hot environments. This study focuses on genetically engineered knock-out and overexpression strains to evaluate the importance of γPFD in the growth and thermal tolerance of <i>M. jannaschii</i>. An in-depth analysis of cell growth, morphology and transcriptional responses to heat stress revealed that although the gene encoding γPFD is substantially upregulated in response to heat shock, the γPFD is not indispensable for high-temperature survival. Instead, its absence in the knock-out strain is compensated for by the upregulation of several proteolytic proteins in the absence of heat shock, nearly matching the corresponding transcription profile of selected transcripts for proteins involved in protein synthesis and folding in the wild-type strain following heat shock, using quantitative reverse-transcription PCR (RT-qPCR). These findings bridge environmental adaptation with molecular biology, underscoring the versatility of extremophiles and providing a deeper mechanistic understanding of how they cope with stress.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16705","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16705","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elucidating the role of molecular chaperones in extremely thermophilic archaea, including the gamma prefoldin (γPFD) in the deep-sea methanogen Methanocaldococcus jannaschii, is integral to understanding microbial adaptation to hot environments. This study focuses on genetically engineered knock-out and overexpression strains to evaluate the importance of γPFD in the growth and thermal tolerance of M. jannaschii. An in-depth analysis of cell growth, morphology and transcriptional responses to heat stress revealed that although the gene encoding γPFD is substantially upregulated in response to heat shock, the γPFD is not indispensable for high-temperature survival. Instead, its absence in the knock-out strain is compensated for by the upregulation of several proteolytic proteins in the absence of heat shock, nearly matching the corresponding transcription profile of selected transcripts for proteins involved in protein synthesis and folding in the wild-type strain following heat shock, using quantitative reverse-transcription PCR (RT-qPCR). These findings bridge environmental adaptation with molecular biology, underscoring the versatility of extremophiles and providing a deeper mechanistic understanding of how they cope with stress.

Abstract Image

丝状γ-prefoldin伴侣蛋白对詹纳斯奇氏梅氏球菌的生长和热适应并非必不可少。
阐明分子伴侣蛋白在极端嗜热古细菌中的作用,包括深海甲烷原甲烷球菌(Methanocaldococcus jannaschii)中的γ预折叠素(γPFD),对于了解微生物对高温环境的适应性是不可或缺的。本研究主要通过基因工程敲除和过表达菌株来评估γPFD在M. jannaschii的生长和耐热性中的重要性。对细胞生长、形态和热胁迫转录反应的深入分析表明,虽然编码γPFD的基因在热休克反应中大幅上调,但γPFD并不是高温生存所不可或缺的。相反,γPFD 在基因敲除菌株中的缺失通过几种蛋白水解蛋白在无热休克时的上调得到了补偿,利用定量反转录 PCR(RT-qPCR)技术,这几乎与野生型菌株在热休克后参与蛋白质合成和折叠的蛋白质转录谱相吻合。这些发现是环境适应与分子生物学之间的桥梁,强调了嗜极生物的多功能性,并从机理上加深了对它们如何应对压力的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信