Hee-Jeong Cha, Dominic J. Glover, Douglas S. Clark
{"title":"The filamentous γ-prefoldin chaperone is not essential for growth and thermal adaptation in Methanocaldococcus jannaschii","authors":"Hee-Jeong Cha, Dominic J. Glover, Douglas S. Clark","doi":"10.1111/1462-2920.16705","DOIUrl":null,"url":null,"abstract":"<p>Elucidating the role of molecular chaperones in extremely thermophilic archaea, including the gamma prefoldin (γPFD) in the deep-sea methanogen <i>Methanocaldococcus jannaschii</i>, is integral to understanding microbial adaptation to hot environments. This study focuses on genetically engineered knock-out and overexpression strains to evaluate the importance of γPFD in the growth and thermal tolerance of <i>M. jannaschii</i>. An in-depth analysis of cell growth, morphology and transcriptional responses to heat stress revealed that although the gene encoding γPFD is substantially upregulated in response to heat shock, the γPFD is not indispensable for high-temperature survival. Instead, its absence in the knock-out strain is compensated for by the upregulation of several proteolytic proteins in the absence of heat shock, nearly matching the corresponding transcription profile of selected transcripts for proteins involved in protein synthesis and folding in the wild-type strain following heat shock, using quantitative reverse-transcription PCR (RT-qPCR). These findings bridge environmental adaptation with molecular biology, underscoring the versatility of extremophiles and providing a deeper mechanistic understanding of how they cope with stress.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16705","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16705","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the role of molecular chaperones in extremely thermophilic archaea, including the gamma prefoldin (γPFD) in the deep-sea methanogen Methanocaldococcus jannaschii, is integral to understanding microbial adaptation to hot environments. This study focuses on genetically engineered knock-out and overexpression strains to evaluate the importance of γPFD in the growth and thermal tolerance of M. jannaschii. An in-depth analysis of cell growth, morphology and transcriptional responses to heat stress revealed that although the gene encoding γPFD is substantially upregulated in response to heat shock, the γPFD is not indispensable for high-temperature survival. Instead, its absence in the knock-out strain is compensated for by the upregulation of several proteolytic proteins in the absence of heat shock, nearly matching the corresponding transcription profile of selected transcripts for proteins involved in protein synthesis and folding in the wild-type strain following heat shock, using quantitative reverse-transcription PCR (RT-qPCR). These findings bridge environmental adaptation with molecular biology, underscoring the versatility of extremophiles and providing a deeper mechanistic understanding of how they cope with stress.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens