Imaged Capillary Isoelectric Focusing Coupled to High-Resolution Mass Spectrometry (icIEF-MS) for Cysteine-Linked Antibody-Drug Conjugate (ADC) Heterogeneity Characterization Under Native Condition.
Xiaoxi Zhang, Gang Wu, Min Du, Tao Bo, Tong Chen, Tiemin Huang
{"title":"Imaged Capillary Isoelectric Focusing Coupled to High-Resolution Mass Spectrometry (icIEF-MS) for Cysteine-Linked Antibody-Drug Conjugate (ADC) Heterogeneity Characterization Under Native Condition.","authors":"Xiaoxi Zhang, Gang Wu, Min Du, Tao Bo, Tong Chen, Tiemin Huang","doi":"10.1002/elps.202400083","DOIUrl":null,"url":null,"abstract":"<p><p>Native mass spectrometry (nMS) is a cutting-edge technique that leverages electrospray ionization MS (ESI-MS) to investigate large biomolecules and their complexes in solution. The goal of nMS is to retain the native structural features and interactions of the analytes during the transition to the gas phase, providing insights into their natural conformations. In biopharmaceutical development, nMS serves as a powerful tool for analyzing complex protein heterogeneity, allowing for the examination of non-covalently bonded assemblies in a state that closely resembles their natural folded form. Herein, we present an imaged capillary isoelectric focusing-MS (icIEF-MS) workflow to characterize cysteine-linked antibody-drug conjugate (ADC) under native conditions. Two ADCs were analyzed: a latest generation cysteine-linked ADC polatuzumab vedotin and the first FDA-approved cysteine-linked ADC brentuximab vedotin. This workflow benefits from a recently developed icIEF system that is MS-friendly and capable of directly coupling to a high-sensitivity MS instrument. Results show that the icIEF separation is influenced by both drug payloads and the post-translational modifications (PTMs), which are then promptly identified by MS. Overall, this native icIEF-MS method demonstrates the potential to understand and control the critical quality attributes (CQAs) that are essential for the safe and effective use of ADCs.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400083","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Native mass spectrometry (nMS) is a cutting-edge technique that leverages electrospray ionization MS (ESI-MS) to investigate large biomolecules and their complexes in solution. The goal of nMS is to retain the native structural features and interactions of the analytes during the transition to the gas phase, providing insights into their natural conformations. In biopharmaceutical development, nMS serves as a powerful tool for analyzing complex protein heterogeneity, allowing for the examination of non-covalently bonded assemblies in a state that closely resembles their natural folded form. Herein, we present an imaged capillary isoelectric focusing-MS (icIEF-MS) workflow to characterize cysteine-linked antibody-drug conjugate (ADC) under native conditions. Two ADCs were analyzed: a latest generation cysteine-linked ADC polatuzumab vedotin and the first FDA-approved cysteine-linked ADC brentuximab vedotin. This workflow benefits from a recently developed icIEF system that is MS-friendly and capable of directly coupling to a high-sensitivity MS instrument. Results show that the icIEF separation is influenced by both drug payloads and the post-translational modifications (PTMs), which are then promptly identified by MS. Overall, this native icIEF-MS method demonstrates the potential to understand and control the critical quality attributes (CQAs) that are essential for the safe and effective use of ADCs.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.