Kanika Suri, Liam Pfeifer, Donna Cvet, Angela Li, Michael McCoy, Amit Singh, Mansoor M Amiji
{"title":"Oral delivery of stabilized lipid nanoparticles for nucleic acid therapeutics.","authors":"Kanika Suri, Liam Pfeifer, Donna Cvet, Angela Li, Michael McCoy, Amit Singh, Mansoor M Amiji","doi":"10.1007/s13346-024-01709-4","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal disorders originate in the gastrointestinal tract (GIT), and the therapies can benefit from direct access to the GIT achievable through the oral route. RNA molecules show great promise therapeutically but are highly susceptible to degradation and often require a carrier for cytoplasmic access. Lipid nanoparticles (LNPs) are clinically proven drug-delivery agents, primarily administered parenterally. An ideal Orally Delivered (OrD) LNP formulation should overcome the diverse GI environment, successfully delivering the drug to the site of action. A versatile OrD LNP formulation has been developed to encapsulate and deliver siRNA and mRNA in this paper. The formulations were prepared by the systematic addition of cationic lipid to the base LNP formulation, keeping the total of cationic lipid and ionizable lipid to 50 mol%. Biorelevant media stability depicted increased resistance to bile salt mediated destabilization upon the addition of the cationic lipid, however the in vitro efficacy data underscored the importance of the ionizable lipid. Based on this, OrD LNP was selected comprising of 20% cationic lipid and 30% ionizable lipid. Further investigation revealed the enhanced efficacy of OrD LNP in vitro after incubation in different dilutions of fasted gastric, fasted intestinal media, and mucin. Confocal imaging and flow cytometry confirmed uptake while in vivo studies demonstrated efficacy with siRNA and mRNA as payloads. Taken together, this research introduces OrD LNP to deliver nucleic acid locally to the GIT.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01709-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gastrointestinal disorders originate in the gastrointestinal tract (GIT), and the therapies can benefit from direct access to the GIT achievable through the oral route. RNA molecules show great promise therapeutically but are highly susceptible to degradation and often require a carrier for cytoplasmic access. Lipid nanoparticles (LNPs) are clinically proven drug-delivery agents, primarily administered parenterally. An ideal Orally Delivered (OrD) LNP formulation should overcome the diverse GI environment, successfully delivering the drug to the site of action. A versatile OrD LNP formulation has been developed to encapsulate and deliver siRNA and mRNA in this paper. The formulations were prepared by the systematic addition of cationic lipid to the base LNP formulation, keeping the total of cationic lipid and ionizable lipid to 50 mol%. Biorelevant media stability depicted increased resistance to bile salt mediated destabilization upon the addition of the cationic lipid, however the in vitro efficacy data underscored the importance of the ionizable lipid. Based on this, OrD LNP was selected comprising of 20% cationic lipid and 30% ionizable lipid. Further investigation revealed the enhanced efficacy of OrD LNP in vitro after incubation in different dilutions of fasted gastric, fasted intestinal media, and mucin. Confocal imaging and flow cytometry confirmed uptake while in vivo studies demonstrated efficacy with siRNA and mRNA as payloads. Taken together, this research introduces OrD LNP to deliver nucleic acid locally to the GIT.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.