One-pot synthesis of polysaccharide/gelatin amorphous hydrogels impregnated with a bioflavonoid derived from Elaeis guineensis leaf: wound healing and drug release properties.
Mohamad Shazeli Che Zain, Mohammed Danish, Khozirah Shaari, Sharida Fakurazi
{"title":"One-pot synthesis of polysaccharide/gelatin amorphous hydrogels impregnated with a bioflavonoid derived from Elaeis guineensis leaf: wound healing and drug release properties.","authors":"Mohamad Shazeli Che Zain, Mohammed Danish, Khozirah Shaari, Sharida Fakurazi","doi":"10.1007/s40199-024-00540-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Amorphous hydrogel is a strategic wound healing dressings that comprised of water, polymers and excipients with no shape. The dense cross-linked network of polymer is interspersed by the immobilized water component could rehydrate and promote healing in wound tissue.</p><p><strong>Objective: </strong>In this work, various polysaccharide/gelatin amorphous hydrogels with the impregnation of oil palm leaf derived total flavonoid enriched extract (OPL-TFEE) were fabricated via one-pot synthesis method to provide multiple crosslinking networks.</p><p><strong>Method: </strong>The bioflavonoids (OPL-TFEE) were derived from Elaeis guineensis leaf using an integrated green extraction and enrichment process. Amorphous hydrogels with good wound healing properties were developed by incorporating 0.3% antioxidant agent into the hybrid polymeric gelling system.</p><p><strong>Result: </strong>The formulations appeared as a semi-solid dark yellow translucent hydrogel with good spreading and consistency characteristics and satisfying aesthetic properties. The FTIR analysis indicated that the bioflavonoid was compatible with the matrix, and the hydrogels showed porous morphological structures when observed under SEM. Furthermore, the hydrogels possessed shear thinning, pseudoplastic, and elastic properties. Bioflavonoids-impregnated polysaccharide/gelatin hydrogel release 95-98% bioflavonoids within 24 h, while the drug release profile followed the Korsmeyer-Peppas kinetic model. The hydrogels showed antioxidant and wound healing properties with no sign of cytotoxicity.</p><p><strong>Conclusion: </strong>Overall, the results revealed bioflavonoid-loaded hydrogels exhibited good physicochemical and biological properties, thus could serve as new innovative formulation in the sustainable advancement of wound care product for promoting wound healing.</p>","PeriodicalId":10888,"journal":{"name":"DARU Journal of Pharmaceutical Sciences","volume":" ","pages":"689-703"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DARU Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40199-024-00540-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Amorphous hydrogel is a strategic wound healing dressings that comprised of water, polymers and excipients with no shape. The dense cross-linked network of polymer is interspersed by the immobilized water component could rehydrate and promote healing in wound tissue.
Objective: In this work, various polysaccharide/gelatin amorphous hydrogels with the impregnation of oil palm leaf derived total flavonoid enriched extract (OPL-TFEE) were fabricated via one-pot synthesis method to provide multiple crosslinking networks.
Method: The bioflavonoids (OPL-TFEE) were derived from Elaeis guineensis leaf using an integrated green extraction and enrichment process. Amorphous hydrogels with good wound healing properties were developed by incorporating 0.3% antioxidant agent into the hybrid polymeric gelling system.
Result: The formulations appeared as a semi-solid dark yellow translucent hydrogel with good spreading and consistency characteristics and satisfying aesthetic properties. The FTIR analysis indicated that the bioflavonoid was compatible with the matrix, and the hydrogels showed porous morphological structures when observed under SEM. Furthermore, the hydrogels possessed shear thinning, pseudoplastic, and elastic properties. Bioflavonoids-impregnated polysaccharide/gelatin hydrogel release 95-98% bioflavonoids within 24 h, while the drug release profile followed the Korsmeyer-Peppas kinetic model. The hydrogels showed antioxidant and wound healing properties with no sign of cytotoxicity.
Conclusion: Overall, the results revealed bioflavonoid-loaded hydrogels exhibited good physicochemical and biological properties, thus could serve as new innovative formulation in the sustainable advancement of wound care product for promoting wound healing.
期刊介绍:
DARU Journal of Pharmaceutical Sciences is a peer-reviewed journal published on behalf of Tehran University of Medical Sciences. The journal encompasses all fields of the pharmaceutical sciences and presents timely research on all areas of drug conception, design, manufacture, classification and assessment.
The term DARU is derived from the Persian name meaning drug or medicine. This journal is a unique platform to improve the knowledge of researchers and scientists by publishing novel articles including basic and clinical investigations from members of the global scientific community in the forms of original articles, systematic or narrative reviews, meta-analyses, letters, and short communications.