{"title":"Structural Insights and Biological Activities of Furan-Based Drugs in the Treatment of Human Diseases.","authors":"Avinash Kumar Mishra, Kuldeep Singh, Sunam Saha, Harsh Bhardwaj, Jeetendra Kumar Gupta, Kamal Shah, Shivendra Kumar, Divya Jain, Hritik Verma","doi":"10.2174/0113862073319757240912055303","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases present significant public health challenges, driving the search for innovative therapeutic strategies. This review explores the neuroprotective potential of furan-containing compounds, which are derived from various natural and synthetic sources. These compounds are observed for their diverse pharmacological activities, including antioxidant and anti-inflammatory properties. By scavenging free radicals and mitigating oxidative stress, they address a key aspect of neurodegeneration. Additionally, furan derivatives modulate inflammatory pathways, potentially reducing neuroinflammation, a critical factor in the progression of these disorders. The review also highlights the impact of these compounds on neuronal survival and regeneration, suggesting their role in promoting neurogenesis and enhancing neuronal plasticity. Their interactions with neurotransmitter systems further support their neuroprotective effects, particularly in maintaining synaptic function and neurotransmission. The potential applications of furan-containing compounds are discussed concerning specific neurodegenerative diseases, such as Alzheimer's and Parkinson's. Insights from preclinical studies and in vitro experiments underscore their therapeutic promise across various experimental models. While still in the early stages of research, the evidence suggests that furan-containing compounds could be valuable in developing effective interventions for neurodegenerative diseases. This review emphasizes the need for further investigation into these compounds to realize their potential as neuroprotective agents fully.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073319757240912055303","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative diseases present significant public health challenges, driving the search for innovative therapeutic strategies. This review explores the neuroprotective potential of furan-containing compounds, which are derived from various natural and synthetic sources. These compounds are observed for their diverse pharmacological activities, including antioxidant and anti-inflammatory properties. By scavenging free radicals and mitigating oxidative stress, they address a key aspect of neurodegeneration. Additionally, furan derivatives modulate inflammatory pathways, potentially reducing neuroinflammation, a critical factor in the progression of these disorders. The review also highlights the impact of these compounds on neuronal survival and regeneration, suggesting their role in promoting neurogenesis and enhancing neuronal plasticity. Their interactions with neurotransmitter systems further support their neuroprotective effects, particularly in maintaining synaptic function and neurotransmission. The potential applications of furan-containing compounds are discussed concerning specific neurodegenerative diseases, such as Alzheimer's and Parkinson's. Insights from preclinical studies and in vitro experiments underscore their therapeutic promise across various experimental models. While still in the early stages of research, the evidence suggests that furan-containing compounds could be valuable in developing effective interventions for neurodegenerative diseases. This review emphasizes the need for further investigation into these compounds to realize their potential as neuroprotective agents fully.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.