Miguel Mascarenhas Saraiva, Mariano González-Haba, Jessica Widmer, Francisco Mendes, Tamas Gonda, Belen Agudo, Tiago Ribeiro, António Costa, Yousef Fazel, Marcos Eduardo Lera, Eduardo Horneaux de Moura, Matheus Ferreira de Carvalho, Alexandre Bestetti, João Afonso, Miguel Martins, Maria João Almeida, Filipe Vilas-Boas, Pedro Moutinho-Ribeiro, Susana Lopes, Joana Fernandes, João Ferreira, Guilherme Macedo
{"title":"Deep Learning and Automatic Differentiation of Pancreatic Lesions in Endoscopic Ultrasound: A Transatlantic Study.","authors":"Miguel Mascarenhas Saraiva, Mariano González-Haba, Jessica Widmer, Francisco Mendes, Tamas Gonda, Belen Agudo, Tiago Ribeiro, António Costa, Yousef Fazel, Marcos Eduardo Lera, Eduardo Horneaux de Moura, Matheus Ferreira de Carvalho, Alexandre Bestetti, João Afonso, Miguel Martins, Maria João Almeida, Filipe Vilas-Boas, Pedro Moutinho-Ribeiro, Susana Lopes, Joana Fernandes, João Ferreira, Guilherme Macedo","doi":"10.14309/ctg.0000000000000771","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Endoscopic ultrasound (EUS) allows for characterization and biopsy of pancreatic lesions. Pancreatic cystic neoplasms (PCN) include mucinous (M-PCN) and nonmucinous lesions (NM-PCN). Pancreatic ductal adenocarcinoma (P-DAC) is the commonest pancreatic solid lesion (PSL), followed by pancreatic neuroendocrine tumor (P-NET). Although EUS is preferred for pancreatic lesion evaluation, its diagnostic accuracy is suboptimal. This multicentric study aims to develop a convolutional neural network (CNN) for detecting and distinguishing PCN (namely M-PCN and NM-PCN) and PSL (particularly P-DAC and P-NET).</p><p><strong>Methods: </strong>A CNN was developed with 378 EUS examinations from 4 international reference centers (Centro Hospitalar Universitário São João, Hospital Universitario Puerta de Hierro Majadahonda, New York University Hospitals, Hospital das Clínicas Faculdade de Medicina da Universidade de São Paulo). About 126.000 images were obtained-19.528 M-PCN, 8.175 NM-PCN, 64.286 P-DAC, 29.153 P-NET, and 4.858 normal pancreas images. A trinary CNN differentiated normal pancreas tissue from M-PCN and NM-PCN. A binary CNN distinguished P-DAC from P-NET. The total data set was divided into a training and testing data set (used for model's evaluation) in a 90/10% ratio. The model was evaluated through its sensitivity, specificity, positive and negative predictive values, and accuracy.</p><p><strong>Results: </strong>The CNN had 99.1% accuracy for identifying normal pancreatic tissue, 99.0% and 99.8% for M-PCN and NM-PCN, respectively. P-DAC and P-NET were distinguished with 94.0% accuracy.</p><p><strong>Discussion: </strong>Our group developed the first worldwide CNN capable of detecting and differentiating the commonest PCN and PSL in EUS images, using examinations from 4 centers in 2 continents, minimizing the impact of the demographic bias. Larger multicentric studies are needed for technology implementation.</p>","PeriodicalId":10278,"journal":{"name":"Clinical and Translational Gastroenterology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14309/ctg.0000000000000771","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Endoscopic ultrasound (EUS) allows for characterization and biopsy of pancreatic lesions. Pancreatic cystic neoplasms (PCN) include mucinous (M-PCN) and nonmucinous lesions (NM-PCN). Pancreatic ductal adenocarcinoma (P-DAC) is the commonest pancreatic solid lesion (PSL), followed by pancreatic neuroendocrine tumor (P-NET). Although EUS is preferred for pancreatic lesion evaluation, its diagnostic accuracy is suboptimal. This multicentric study aims to develop a convolutional neural network (CNN) for detecting and distinguishing PCN (namely M-PCN and NM-PCN) and PSL (particularly P-DAC and P-NET).
Methods: A CNN was developed with 378 EUS examinations from 4 international reference centers (Centro Hospitalar Universitário São João, Hospital Universitario Puerta de Hierro Majadahonda, New York University Hospitals, Hospital das Clínicas Faculdade de Medicina da Universidade de São Paulo). About 126.000 images were obtained-19.528 M-PCN, 8.175 NM-PCN, 64.286 P-DAC, 29.153 P-NET, and 4.858 normal pancreas images. A trinary CNN differentiated normal pancreas tissue from M-PCN and NM-PCN. A binary CNN distinguished P-DAC from P-NET. The total data set was divided into a training and testing data set (used for model's evaluation) in a 90/10% ratio. The model was evaluated through its sensitivity, specificity, positive and negative predictive values, and accuracy.
Results: The CNN had 99.1% accuracy for identifying normal pancreatic tissue, 99.0% and 99.8% for M-PCN and NM-PCN, respectively. P-DAC and P-NET were distinguished with 94.0% accuracy.
Discussion: Our group developed the first worldwide CNN capable of detecting and differentiating the commonest PCN and PSL in EUS images, using examinations from 4 centers in 2 continents, minimizing the impact of the demographic bias. Larger multicentric studies are needed for technology implementation.
期刊介绍:
Clinical and Translational Gastroenterology (CTG), published on behalf of the American College of Gastroenterology (ACG), is a peer-reviewed open access online journal dedicated to innovative clinical work in the field of gastroenterology and hepatology. CTG hopes to fulfill an unmet need for clinicians and scientists by welcoming novel cohort studies, early-phase clinical trials, qualitative and quantitative epidemiologic research, hypothesis-generating research, studies of novel mechanisms and methodologies including public health interventions, and integration of approaches across organs and disciplines. CTG also welcomes hypothesis-generating small studies, methods papers, and translational research with clear applications to human physiology or disease.
Colon and small bowel
Endoscopy and novel diagnostics
Esophagus
Functional GI disorders
Immunology of the GI tract
Microbiology of the GI tract
Inflammatory bowel disease
Pancreas and biliary tract
Liver
Pathology
Pediatrics
Preventative medicine
Nutrition/obesity
Stomach.