Application of cross-channel multiscale permutation entropy in measuring multichannel data complexity.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Weijia Li, Xiaohong Shen, Yaan Li, Zhe Chen, Yupeng Shen
{"title":"Application of cross-channel multiscale permutation entropy in measuring multichannel data complexity.","authors":"Weijia Li, Xiaohong Shen, Yaan Li, Zhe Chen, Yupeng Shen","doi":"10.1063/5.0223168","DOIUrl":null,"url":null,"abstract":"<p><p>Entropy is a pivotal concept in nonlinear dynamics, revealing chaos, self-organization, and information transmission in complex systems. Permutation entropy, due to its computational efficiency and lower data length requirements, has found widespread use in various fields. However, in the age of multi-channel data, existing permutation entropy methods are limited in capturing cross-channel information. This paper presents cross-channel multiscale permutation entropy algorithm, and the proposed algorithm can effectively capture the cross-channel information of multi-channel dataset. The major modification lies in the concurrent frequency counting of specific events during the calculation steps. The algorithm improves phase space reconstruction and mapping, enhancing the capability of multi-channel permutation entropy methods to extract cross-channel information. Simulation and real-world multi-channel data analysis demonstrate the superiority of the proposed algorithm in distinguishing different types of data. The improvement is not limited to one specific algorithm and can be applied to various multi-channel permutation entropy variants, making them more effective in uncovering information across different channels.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0223168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Entropy is a pivotal concept in nonlinear dynamics, revealing chaos, self-organization, and information transmission in complex systems. Permutation entropy, due to its computational efficiency and lower data length requirements, has found widespread use in various fields. However, in the age of multi-channel data, existing permutation entropy methods are limited in capturing cross-channel information. This paper presents cross-channel multiscale permutation entropy algorithm, and the proposed algorithm can effectively capture the cross-channel information of multi-channel dataset. The major modification lies in the concurrent frequency counting of specific events during the calculation steps. The algorithm improves phase space reconstruction and mapping, enhancing the capability of multi-channel permutation entropy methods to extract cross-channel information. Simulation and real-world multi-channel data analysis demonstrate the superiority of the proposed algorithm in distinguishing different types of data. The improvement is not limited to one specific algorithm and can be applied to various multi-channel permutation entropy variants, making them more effective in uncovering information across different channels.

在测量多通道数据复杂性中应用跨通道多尺度排列熵。
熵是非线性动力学中的一个重要概念,它揭示了复杂系统中的混沌、自组织和信息传递。置换熵因其计算效率高、对数据长度要求低,已被广泛应用于各个领域。然而,在多通道数据时代,现有的置换熵方法在捕捉跨通道信息方面存在局限性。本文提出了跨信道多尺度置换熵算法,该算法能有效捕捉多信道数据集的跨信道信息。该算法的主要改进在于计算步骤中对特定事件的并发频率计数。该算法改进了相空间重构和映射,提高了多信道置换熵方法提取跨信道信息的能力。仿真和实际多通道数据分析证明了所提算法在区分不同类型数据方面的优越性。这种改进并不局限于一种特定的算法,它可以应用于各种多通道置换熵变体,使它们在挖掘不同通道的信息方面更加有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信