Identification of dilated cardiomyopathy-linked key genes by bioinformatics methods and evaluating the impact of tannic acid and monosodium glutamate in rats.
{"title":"Identification of dilated cardiomyopathy-linked key genes by bioinformatics methods and evaluating the impact of tannic acid and monosodium glutamate in rats.","authors":"Habibe Karadas, Hilal Tosun, Hamid Ceylan","doi":"10.1002/bab.2670","DOIUrl":null,"url":null,"abstract":"<p><p>Dilated cardiomyopathy (DCM) is the most common type of myocardial dysfunction, affecting mostly young adults, but its therapeutic diagnosis and biomarkers for prognosis are lacking. This study aimed to investigate the possible effect of the common food additive monosodium glutamate (MSG) and tannic acid (TA), a phenolic compound, on the key molecular actors responsible for DCM. DCM-related publicly available microarray datasets (GSE120895, GSE17800, and GSE19303) were downloaded from the comprehensive Gene Expression Omnibus (GEO) database, and analyzed to identify differentially expressed genes (DEGs). By integrating DEGs and gene-disease validity curation results, overlapping genes were screened and identified as hub genes. Protein-protein interaction (PPI) network and ontology analysis were performed to make sense of the identified biological data. Finally, mRNA expression changes of identified hub genes in the heart tissues of rats treated with MSG and TA were measured by the qPCR method. Six upregulated (IGF1, TTN, ACTB, LMNA, EDN1, and NPPB) DEGs were identified between the DCM and healthy control samples as the hub genes. qPCR results revealed that the mRNA levels of these genes involved in DCM development increased significantly in rat heart tissues exposed to MSG. In contrast, this increase was remarkably alleviated by TA treatment. Our results provide new insights into critical molecular mechanisms that should be focused on in future DCM studies. Moreover, MSG may play a critical role in DCM formation, and TA may be used as a promising therapeutic agent in DCM.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2670","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dilated cardiomyopathy (DCM) is the most common type of myocardial dysfunction, affecting mostly young adults, but its therapeutic diagnosis and biomarkers for prognosis are lacking. This study aimed to investigate the possible effect of the common food additive monosodium glutamate (MSG) and tannic acid (TA), a phenolic compound, on the key molecular actors responsible for DCM. DCM-related publicly available microarray datasets (GSE120895, GSE17800, and GSE19303) were downloaded from the comprehensive Gene Expression Omnibus (GEO) database, and analyzed to identify differentially expressed genes (DEGs). By integrating DEGs and gene-disease validity curation results, overlapping genes were screened and identified as hub genes. Protein-protein interaction (PPI) network and ontology analysis were performed to make sense of the identified biological data. Finally, mRNA expression changes of identified hub genes in the heart tissues of rats treated with MSG and TA were measured by the qPCR method. Six upregulated (IGF1, TTN, ACTB, LMNA, EDN1, and NPPB) DEGs were identified between the DCM and healthy control samples as the hub genes. qPCR results revealed that the mRNA levels of these genes involved in DCM development increased significantly in rat heart tissues exposed to MSG. In contrast, this increase was remarkably alleviated by TA treatment. Our results provide new insights into critical molecular mechanisms that should be focused on in future DCM studies. Moreover, MSG may play a critical role in DCM formation, and TA may be used as a promising therapeutic agent in DCM.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.