Oksana Malanchuk, Antonina Khoruzhenko, Viktoriia Kosach, Anna Bdzhola, Dariy Bidiuk, Charlie Brett, Ivan Gout, Valeriy Filonenko
{"title":"Immunofluorescent detection of protein CoAlation in mammalian cells under oxidative stress.","authors":"Oksana Malanchuk, Antonina Khoruzhenko, Viktoriia Kosach, Anna Bdzhola, Dariy Bidiuk, Charlie Brett, Ivan Gout, Valeriy Filonenko","doi":"10.1242/bio.061685","DOIUrl":null,"url":null,"abstract":"<p><p>Previously, we reported the generation and characterisation of highly specific anti-CoA monoclonal antibodies capable of recognizing CoA in various immunological assays. Utilizing these antibodies in conjunction with mass spectrometry, we identified a wide array of cellular proteins modified by CoA in bacteria and mammalian cells. Furthermore, our findings demonstrated that such modifications could be induced by oxidative or metabolic stress. This study advances the utility of anti-CoA monoclonal antibodies in analysing protein CoAlation, highlighting their effectiveness in immunofluorescent assay. Our data corroborates a significant increase in cellular protein CoAlation induced by oxidative agents. Additionally, we observed that hydrogen-peroxide induced protein CoAlation is predominantly associated with mitochondrial proteins.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.061685","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Previously, we reported the generation and characterisation of highly specific anti-CoA monoclonal antibodies capable of recognizing CoA in various immunological assays. Utilizing these antibodies in conjunction with mass spectrometry, we identified a wide array of cellular proteins modified by CoA in bacteria and mammalian cells. Furthermore, our findings demonstrated that such modifications could be induced by oxidative or metabolic stress. This study advances the utility of anti-CoA monoclonal antibodies in analysing protein CoAlation, highlighting their effectiveness in immunofluorescent assay. Our data corroborates a significant increase in cellular protein CoAlation induced by oxidative agents. Additionally, we observed that hydrogen-peroxide induced protein CoAlation is predominantly associated with mitochondrial proteins.
在此之前,我们报道了能够在各种免疫测定中识别 CoA 的高特异性抗 CoA 单克隆抗体的产生和特性。利用这些抗体和质谱技术,我们在细菌和哺乳动物细胞中鉴定出了一系列被 CoA 修饰的细胞蛋白。此外,我们的研究结果表明,氧化或代谢压力可诱导此类修饰。这项研究推进了抗CoA单克隆抗体在分析蛋白质CoAlation中的应用,突出了它们在免疫荧光测定中的有效性。我们的数据证实了氧化剂诱导的细胞蛋白质 CoAlation 的显著增加。此外,我们还观察到过氧化氢诱导的蛋白质 CoAlation 主要与线粒体蛋白质有关。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.