{"title":"Cortical microstructural alterations in different stages of Parkinson's disease.","authors":"Xueqin Bai, Tao Guo, Xiaojun Guan, Cheng Zhou, Jingjing Wu, Haoting Wu, Xiaocao Liu, Chengqing Wu, Jingwen Chen, Jiaqi Wen, Jianmei Qin, Sijia Tan, Xiaojie DuanMu, Luyan Gu, Ting Gao, Peiyu Huang, Baorong Zhang, Xiaojun Xu, Xiangwu Zheng, Minming Zhang","doi":"10.1007/s11682-024-00931-5","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the cortical microstructural alterations in Parkinson's disease (PD) at different stages. 149 PD patients and 76 healthy controls were included. PD patients were divided into early stage PD (EPD) (Hoehn-Yahr stage ≤ 2) and moderate-to-late stage PD (MLPD) (Hoehn-Yahr stage ≥ 2.5) according to their Hoehn-Yahr stages. All participants underwent two-shell diffusion MRI and the images were fitted to Neurite Orientation Dispersion and Density Imaging (NODDI) model to obtain the neurite density index (NDI) and orientation dispersion index (ODI) to reflect the cortical microstructure. We used gray matter-based spatial statistics method to compare the voxel-wise cortical NODDI metrics between groups. Partial correlation was used to correlate the NODDI metrics and global composite outcome in PD patients. Compared with healthy controls, EPD patients showed lower ODI in widespread regions, covering bilateral frontal, temporal, parietal and occipital cortices, as well as regional lower NDI in bilateral cingulate and frontal lobes. Compared with healthy controls, MLPD patients showed lower ODI and NDI in more widespread regions. Compared with EPD patients, MLPD patients showed lower ODI in bilateral temporal, parietal and occipital cortices, where the ODI values were negatively correlated with global composite outcome in PD patients. PD patients showed widespread cortical microstructural degeneration, characterized by reduced neurite density and orientation dispersion, and the cortical neuritic microstructure exhibit progressive degeneration during the progression of PD.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11682-024-00931-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
To explore the cortical microstructural alterations in Parkinson's disease (PD) at different stages. 149 PD patients and 76 healthy controls were included. PD patients were divided into early stage PD (EPD) (Hoehn-Yahr stage ≤ 2) and moderate-to-late stage PD (MLPD) (Hoehn-Yahr stage ≥ 2.5) according to their Hoehn-Yahr stages. All participants underwent two-shell diffusion MRI and the images were fitted to Neurite Orientation Dispersion and Density Imaging (NODDI) model to obtain the neurite density index (NDI) and orientation dispersion index (ODI) to reflect the cortical microstructure. We used gray matter-based spatial statistics method to compare the voxel-wise cortical NODDI metrics between groups. Partial correlation was used to correlate the NODDI metrics and global composite outcome in PD patients. Compared with healthy controls, EPD patients showed lower ODI in widespread regions, covering bilateral frontal, temporal, parietal and occipital cortices, as well as regional lower NDI in bilateral cingulate and frontal lobes. Compared with healthy controls, MLPD patients showed lower ODI and NDI in more widespread regions. Compared with EPD patients, MLPD patients showed lower ODI in bilateral temporal, parietal and occipital cortices, where the ODI values were negatively correlated with global composite outcome in PD patients. PD patients showed widespread cortical microstructural degeneration, characterized by reduced neurite density and orientation dispersion, and the cortical neuritic microstructure exhibit progressive degeneration during the progression of PD.