Genetic Algorithms for Feature Selection in the Classification of COVID-19 Patients.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Cosimo Aliani, Eva Rossi, Mateusz Soliński, Piergiorgio Francia, Antonio Lanatà, Teodor Buchner, Leonardo Bocchi
{"title":"Genetic Algorithms for Feature Selection in the Classification of COVID-19 Patients.","authors":"Cosimo Aliani, Eva Rossi, Mateusz Soliński, Piergiorgio Francia, Antonio Lanatà, Teodor Buchner, Leonardo Bocchi","doi":"10.3390/bioengineering11090952","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) infection can cause feared consequences, such as affecting microcirculatory activity. The combined use of HRV analysis, genetic algorithms, and machine learning classifiers can be helpful in better understanding the characteristics of microcirculation that are mainly affected by COVID-19 infection.</p><p><strong>Methods: </strong>This study aimed to verify the presence of microcirculation alterations in patients with COVID-19 infection, performing Heart Rate Variability (HRV) parameters analysis extracted from PhotoPlethysmoGraphy (PPG) signals. The dataset included 97 subjects divided into two groups: healthy (50 subjects) and patients affected by mild-severity COVID-19 (47 subjects). A total of 26 parameters were extracted by the HRV analysis and were investigated using genetic algorithms with three different subject selection methods and five different machine learning classifiers.</p><p><strong>Results: </strong>Three parameters: meanRR, alpha1, and sd2/sd1 were considered significant, combining the results obtained by the genetic algorithm. Finally, machine learning classifications were performed by training classifiers with only those three features. The best result was achieved by the binary Decision Tree classifier, achieving accuracy of 82%, specificity (or precision) of 86%, and sensitivity of 79%.</p><p><strong>Conclusions: </strong>The study's results highlight the ability to use HRV parameters extraction from PPG signals, combined with genetic algorithms and machine learning classifiers, to determine which features are most helpful in discriminating between healthy and mild-severity COVID-19-affected subjects.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11090952","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) infection can cause feared consequences, such as affecting microcirculatory activity. The combined use of HRV analysis, genetic algorithms, and machine learning classifiers can be helpful in better understanding the characteristics of microcirculation that are mainly affected by COVID-19 infection.

Methods: This study aimed to verify the presence of microcirculation alterations in patients with COVID-19 infection, performing Heart Rate Variability (HRV) parameters analysis extracted from PhotoPlethysmoGraphy (PPG) signals. The dataset included 97 subjects divided into two groups: healthy (50 subjects) and patients affected by mild-severity COVID-19 (47 subjects). A total of 26 parameters were extracted by the HRV analysis and were investigated using genetic algorithms with three different subject selection methods and five different machine learning classifiers.

Results: Three parameters: meanRR, alpha1, and sd2/sd1 were considered significant, combining the results obtained by the genetic algorithm. Finally, machine learning classifications were performed by training classifiers with only those three features. The best result was achieved by the binary Decision Tree classifier, achieving accuracy of 82%, specificity (or precision) of 86%, and sensitivity of 79%.

Conclusions: The study's results highlight the ability to use HRV parameters extraction from PPG signals, combined with genetic algorithms and machine learning classifiers, to determine which features are most helpful in discriminating between healthy and mild-severity COVID-19-affected subjects.

遗传算法在 COVID-19 患者分类中的特征选择。
背景:严重急性呼吸系统综合征冠状病毒-2(SARS-CoV-2)感染会导致令人担忧的后果,如影响微循环活动。结合使用心率变异分析、遗传算法和机器学习分类器有助于更好地了解主要受 COVID-19 感染影响的微循环特征:本研究旨在验证 COVID-19 感染患者是否存在微循环改变,对从光电血流图(PPG)信号中提取的心率变异性(HRV)参数进行分析。数据集包括 97 名受试者,分为两组:健康人(50 名)和轻度 COVID-19 感染者(47 名)。心率变异分析共提取了 26 个参数,并使用遗传算法、三种不同的受试者选择方法和五种不同的机器学习分类器进行了研究:结果:结合遗传算法得出的结果,三个参数:meanRR、alpha1 和 sd2/sd1被认为具有重要意义。最后,只用这三个特征训练分类器,进行机器学习分类。二叉决策树分类器的效果最好,准确率达到 82%,特异性(或精确度)达到 86%,灵敏度达到 79%:研究结果凸显了从 PPG 信号中提取心率变异参数,结合遗传算法和机器学习分类器,确定哪些特征最有助于区分健康受试者和轻度严重 COVID-19 受影响受试者的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信