Evaluation of various polysaccharide-based stationary phases for enantioseparation of chloro-containing derivatives in normal phase liquid chromatography.
{"title":"Evaluation of various polysaccharide-based stationary phases for enantioseparation of chloro-containing derivatives in normal phase liquid chromatography.","authors":"Alina Ghinet, Christophe Furman, Andreea Zubaş, Georgiana Apostol, Adrian Sorin Nica, Emmanuelle Lipka","doi":"10.1002/bmc.6020","DOIUrl":null,"url":null,"abstract":"<p><p>Six polysaccharide-based chiral stationary phases were screened to separate the enantiomers of six chloro-containing derivatives and one derivative bearing electron donating mesomeric substituents, chosen for comparison. These compounds are expected to be P2X7 receptor antagonists with potential anti-inflammatory activity. The study was carried out with four different mobile phases composed of n-heptane and ethanol or isopropanol. Thus, a total of 168 experiments were implemented to find the best conditions aimed at scaling-up the separation of these anti-inflammatory compounds. Chiralpak AD-H separated half of them, i.e., 1, 2, and 6; Chiralpak AS separated also three out of the six compounds, i.e., 1, 2, and 3; Lux Cellulose-5 separated 2, 4, and 6; Lux Cellulose-2 separated 1, 2, and 4; Chiralcel OD-H separated compounds 2 and 5; and finally Chiralcel OJ separated only 3, thus having the lowest rate of success. Additionally, the influence of (i) the stationary and mobile phases and (ii) the chemical structure of the analytes on retention and resolution was investigated.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":" ","pages":"e6020"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/bmc.6020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Six polysaccharide-based chiral stationary phases were screened to separate the enantiomers of six chloro-containing derivatives and one derivative bearing electron donating mesomeric substituents, chosen for comparison. These compounds are expected to be P2X7 receptor antagonists with potential anti-inflammatory activity. The study was carried out with four different mobile phases composed of n-heptane and ethanol or isopropanol. Thus, a total of 168 experiments were implemented to find the best conditions aimed at scaling-up the separation of these anti-inflammatory compounds. Chiralpak AD-H separated half of them, i.e., 1, 2, and 6; Chiralpak AS separated also three out of the six compounds, i.e., 1, 2, and 3; Lux Cellulose-5 separated 2, 4, and 6; Lux Cellulose-2 separated 1, 2, and 4; Chiralcel OD-H separated compounds 2 and 5; and finally Chiralcel OJ separated only 3, thus having the lowest rate of success. Additionally, the influence of (i) the stationary and mobile phases and (ii) the chemical structure of the analytes on retention and resolution was investigated.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.