Emiliana Pandolfo, David Durán-Wendt, Ruben Martínez-Cuesta, Mónica Montoya, Laura Carrera-Ruiz, David Vazquez-Arias, Esther Blanco-Romero, Daniel Garrido-Sanz, Miguel Redondo-Nieto, Marta Martin, Rafael Rivilla
{"title":"Metagenomic analyses of a consortium for the bioremediation of hydrocarbons polluted soils.","authors":"Emiliana Pandolfo, David Durán-Wendt, Ruben Martínez-Cuesta, Mónica Montoya, Laura Carrera-Ruiz, David Vazquez-Arias, Esther Blanco-Romero, Daniel Garrido-Sanz, Miguel Redondo-Nieto, Marta Martin, Rafael Rivilla","doi":"10.1186/s13568-024-01764-7","DOIUrl":null,"url":null,"abstract":"<p><p>A bacterial consortium was isolated from a soil in Noblejas (Toledo, Spain) with a long history of mixed hydrocarbons pollution, by enrichment cultivation. Serial cultures of hydrocarbons polluted soil samples were grown in a minimal medium using diesel (1 mL/L) as the sole carbon and energy source. The bacterial composition of the Noblejas Consortium (NC) was determined by sequencing 16S rRNA gene amplicon libraries. The consortium contained around 50 amplicon sequence variants (ASVs) and the major populations belonged to the genera Pseudomonas, Enterobacter, Delftia, Stenotrophomonas, Achromobacter, Acinetobacter, Novosphingobium, Allorhizobium-Neorhizobium-Rhizobium, Ochrobactrum and Luteibacter. All other genera were below 1%. Metagenomic analysis of NC has shown a high abundance of genes encoding enzymes implicated in aliphatic and (poly) aromatic hydrocarbons degradation, and almost all pathways for hydrocarbon degradation are represented. Metagenomic analysis has also allowed the construction of metagenome assembled genomes (MAGs) for the major players of NC. Metatranscriptomic analysis has shown that several of the ASVs are implicated in hydrocarbon degradation, being Pseudomonas, Acinetobacter and Delftia the most active populations.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"105"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438761/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01764-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A bacterial consortium was isolated from a soil in Noblejas (Toledo, Spain) with a long history of mixed hydrocarbons pollution, by enrichment cultivation. Serial cultures of hydrocarbons polluted soil samples were grown in a minimal medium using diesel (1 mL/L) as the sole carbon and energy source. The bacterial composition of the Noblejas Consortium (NC) was determined by sequencing 16S rRNA gene amplicon libraries. The consortium contained around 50 amplicon sequence variants (ASVs) and the major populations belonged to the genera Pseudomonas, Enterobacter, Delftia, Stenotrophomonas, Achromobacter, Acinetobacter, Novosphingobium, Allorhizobium-Neorhizobium-Rhizobium, Ochrobactrum and Luteibacter. All other genera were below 1%. Metagenomic analysis of NC has shown a high abundance of genes encoding enzymes implicated in aliphatic and (poly) aromatic hydrocarbons degradation, and almost all pathways for hydrocarbon degradation are represented. Metagenomic analysis has also allowed the construction of metagenome assembled genomes (MAGs) for the major players of NC. Metatranscriptomic analysis has shown that several of the ASVs are implicated in hydrocarbon degradation, being Pseudomonas, Acinetobacter and Delftia the most active populations.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.