{"title":"Fungal endophytes and leaf litter fungi as sources of novel inhibitor-resistant cellulase for biofuel production: a basic study.","authors":"Trichur Subramanian Suryanarayanan, Thavamani Rajamani, Nina Aro, Anna Borisova, Kaisa Marjamaa, Meenavalli Babu Govindarajulu","doi":"10.1007/s13205-024-04087-3","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrothermal pretreatments are commonly employed prior to the biotechnological conversion of lignocellulosic biomass (LCB) into value-added products, such as fuels and chemicals. However, the by-products of this pretreatment, including furaldehydes, lignin-derived phenolics, and carboxylic acids, can inhibit the enzymes and microbes used in the biotechnological process. In this study, LCB degrading enzymes of endophytic and litter fungi were screened for their tolerance to potential pretreatment-derived inhibitors. Several fungi produced endo- and exoglucanases that remained functional in the presence of lignocellulose-derived phenolics. Some were also active in the presence of tannic acid. Additionally, thermostable endoglucanase activity was observed in some fungi. The ability of some of these fungi to utilize furaldehyde inhibitors as a sole carbon source was also noted. The culture supernatants of the fungal strains were tested in hydrolysis experiments using microcrystalline cellulose as a substrate, in the presence of lignocellulose phenolics and tannic acid. With some strains, higher sugar yields were obtained in the hydrolysis of cellulose when phenolics were added. Our results highlight the need for more intensive exploration of endophytic and plant litter fungi for novel inhibitor-resistant cellulases for biofuel production.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04087-3.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04087-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrothermal pretreatments are commonly employed prior to the biotechnological conversion of lignocellulosic biomass (LCB) into value-added products, such as fuels and chemicals. However, the by-products of this pretreatment, including furaldehydes, lignin-derived phenolics, and carboxylic acids, can inhibit the enzymes and microbes used in the biotechnological process. In this study, LCB degrading enzymes of endophytic and litter fungi were screened for their tolerance to potential pretreatment-derived inhibitors. Several fungi produced endo- and exoglucanases that remained functional in the presence of lignocellulose-derived phenolics. Some were also active in the presence of tannic acid. Additionally, thermostable endoglucanase activity was observed in some fungi. The ability of some of these fungi to utilize furaldehyde inhibitors as a sole carbon source was also noted. The culture supernatants of the fungal strains were tested in hydrolysis experiments using microcrystalline cellulose as a substrate, in the presence of lignocellulose phenolics and tannic acid. With some strains, higher sugar yields were obtained in the hydrolysis of cellulose when phenolics were added. Our results highlight the need for more intensive exploration of endophytic and plant litter fungi for novel inhibitor-resistant cellulases for biofuel production.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04087-3.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.