{"title":"Halofuginone ameliorates the susceptibility to atrial fibrillation by activating the PI3K/Akt signaling pathway","authors":"Feng Xu, Xiaolong Zhao, Jing Zhang, Chunjian Shen","doi":"10.1007/s10735-024-10270-w","DOIUrl":null,"url":null,"abstract":"<div><p>Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Halofuginone (HF) exerts beneficial effects on organ fibrosis, periodontitis, and cancer. However, the effect of HF against AF remains unknown. During the induction of AF, the rats were intragastrically administered HF (5 mg/kg and 10 mg/kg) daily for 7 consecutive days. Cardiac function was evaluated through echocardiographic analysis. The presence of pathological changes and interstitial fibrosis in the left atrial tissues were investigated. Intracellular Ca<sup>2+</sup> homeostasis and mitochondrial function in atrial tissues were evaluated. The activation of the PI3K/Akt signaling pathway was examined, and an allosteric Akt inhibitor, MK-2206, was applied to confirm the involvement of the PI3K/Akt signaling pathway in the protection against AF by HF. The administration of HF resulted in a prolongation of the atrial effective refractory period (AERP), a reduction in both the duration and inducibility of AF, and a decrease in atrial weight, heart weight, atrial weight/body weight ratio, and heart weight/body weight ratio in rats with AF. In addition, the administration of HF resulted in a reduction in left atrial diameter (LAD) and an increase in left ventricular internal diameter diastolic (LVIDd), ejection fraction (EF), and fractional shortening (FS), while having no effect on left ventricular internal diameter systolic (LVIDs). The pathological changes and cardiac fibrosis observed in rats with AF were mitigated by HF. Moreover, HF enhanced mitochondrial function, suppressed cardiomyocyte apoptosis, and activated the PI3K/Akt pathway in AF rats. Furthermore, the protective effect against AF was also observed in an in vitro model. The effects of HF on fibrosis markers, intracellular Ca<sup>2+</sup> homeostasis, mitochondrial function, and cardiac apoptosis were blocked by MK-2206. HF alleviated the susceptibility to AF in vivo and in vitro via the activation of the PI3K/Akt signaling pathway.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"55 6","pages":"1295 - 1306"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10270-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Halofuginone (HF) exerts beneficial effects on organ fibrosis, periodontitis, and cancer. However, the effect of HF against AF remains unknown. During the induction of AF, the rats were intragastrically administered HF (5 mg/kg and 10 mg/kg) daily for 7 consecutive days. Cardiac function was evaluated through echocardiographic analysis. The presence of pathological changes and interstitial fibrosis in the left atrial tissues were investigated. Intracellular Ca2+ homeostasis and mitochondrial function in atrial tissues were evaluated. The activation of the PI3K/Akt signaling pathway was examined, and an allosteric Akt inhibitor, MK-2206, was applied to confirm the involvement of the PI3K/Akt signaling pathway in the protection against AF by HF. The administration of HF resulted in a prolongation of the atrial effective refractory period (AERP), a reduction in both the duration and inducibility of AF, and a decrease in atrial weight, heart weight, atrial weight/body weight ratio, and heart weight/body weight ratio in rats with AF. In addition, the administration of HF resulted in a reduction in left atrial diameter (LAD) and an increase in left ventricular internal diameter diastolic (LVIDd), ejection fraction (EF), and fractional shortening (FS), while having no effect on left ventricular internal diameter systolic (LVIDs). The pathological changes and cardiac fibrosis observed in rats with AF were mitigated by HF. Moreover, HF enhanced mitochondrial function, suppressed cardiomyocyte apoptosis, and activated the PI3K/Akt pathway in AF rats. Furthermore, the protective effect against AF was also observed in an in vitro model. The effects of HF on fibrosis markers, intracellular Ca2+ homeostasis, mitochondrial function, and cardiac apoptosis were blocked by MK-2206. HF alleviated the susceptibility to AF in vivo and in vitro via the activation of the PI3K/Akt signaling pathway.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.