Selective mycobacterial capture with ultraviolet-polymerized poly-dimethyldiallyl chloride functionalized surfaces

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Xuesong Jiang, Bonolo S. P. Mathekga, Digvijay Singh, Devin Coon, Anjana Sinha, Derek Armstrong, Soumyadipta Acharya, Hai-Quan Mao, Yukari C. Manabe
{"title":"Selective mycobacterial capture with ultraviolet-polymerized poly-dimethyldiallyl chloride functionalized surfaces","authors":"Xuesong Jiang,&nbsp;Bonolo S. P. Mathekga,&nbsp;Digvijay Singh,&nbsp;Devin Coon,&nbsp;Anjana Sinha,&nbsp;Derek Armstrong,&nbsp;Soumyadipta Acharya,&nbsp;Hai-Quan Mao,&nbsp;Yukari C. Manabe","doi":"10.1007/s10856-024-06829-4","DOIUrl":null,"url":null,"abstract":"<div><p>Tuberculosis (TB) is the top cause of death from a single infectious pathogen after COVID-19. Despite molecular diagnostic advances, two-thirds of the 10 million annual TB cases are still diagnosed using direct smear microscopy which has ~50% sensitivity. To increase the analytical performance of smear microscopy, we developed and characterized a novel polymer (Polydiallyldimethylammonium chloride [PDADMAC]) engraftment on inexpensive polystyrene (PS) specifically functionalized for mycobacterial capture. Engraftment is achieved via UV photopolymerization of DADMAC monomer on plasma-activated PS. The platform was tested on sputum from presumptive TB cases in Kampala, Uganda (<i>n</i> = 50), with an increased overall sensitivity of 81.8% (27/33) vs. fluorescent smear microscopy 57% (19/33) compared to a molecular (Cepheid GeneXpert MTB/RIF) gold standard. Frugal smear diagnostic innovation that is rapid and does not require dedicated instrumentation may offer an important solution to bridge the TB diagnostic gap.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06829-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis (TB) is the top cause of death from a single infectious pathogen after COVID-19. Despite molecular diagnostic advances, two-thirds of the 10 million annual TB cases are still diagnosed using direct smear microscopy which has ~50% sensitivity. To increase the analytical performance of smear microscopy, we developed and characterized a novel polymer (Polydiallyldimethylammonium chloride [PDADMAC]) engraftment on inexpensive polystyrene (PS) specifically functionalized for mycobacterial capture. Engraftment is achieved via UV photopolymerization of DADMAC monomer on plasma-activated PS. The platform was tested on sputum from presumptive TB cases in Kampala, Uganda (n = 50), with an increased overall sensitivity of 81.8% (27/33) vs. fluorescent smear microscopy 57% (19/33) compared to a molecular (Cepheid GeneXpert MTB/RIF) gold standard. Frugal smear diagnostic innovation that is rapid and does not require dedicated instrumentation may offer an important solution to bridge the TB diagnostic gap.

Graphical Abstract

利用紫外线聚合的聚二甲基二烯丙基氯功能化表面选择性捕获分枝杆菌。
结核病(TB)是仅次于 COVID-19 的单一传染性病原体致死率最高的病因。尽管分子诊断技术不断进步,但每年 1000 万结核病例中仍有三分之二是通过灵敏度约为 50% 的直接涂片显微镜诊断出来的。为了提高涂片显微镜的分析性能,我们开发了一种新型聚合物(聚二烯丙基二甲基氯化铵 [PDADMAC]),并对其进行了表征。接枝是通过 DADMAC 单体在等离子活化 PS 上的紫外光聚合作用实现的。该平台在乌干达坎帕拉的推定肺结核病例(n = 50)的痰液中进行了测试,与分子(Cepheid GeneXpert MTB/RIF)黄金标准相比,总体灵敏度提高了 81.8%(27/33),而荧光涂片显微镜检查灵敏度为 57%(19/33)。快速、无需专用仪器的低成本涂片诊断创新可为弥合结核病诊断差距提供重要的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信