Azadeh Eskandari, Thean Chor Leow, Mohd Basyaruddin Abdul Rahman, Siti Nurbaya Oslan
{"title":"Structural investigation, computational analysis, and theoretical cryoprotectant approach of antifreeze protein type IV mutants","authors":"Azadeh Eskandari, Thean Chor Leow, Mohd Basyaruddin Abdul Rahman, Siti Nurbaya Oslan","doi":"10.1007/s00249-024-01719-7","DOIUrl":null,"url":null,"abstract":"<div><p>Antifreeze proteins (AFPs) have unique features to sustain life in sub-zero environments due to ice recrystallization inhibition (IRI) and thermal hysteresis (TH). AFPs are in demand as agents in cryopreservation, but some antifreeze proteins have low levels of activity. This research aims to improve the cryopreservation activity of an AFPIV. In this in silico study, the helical peptide afp1m from an Antarctic yeast AFP was modeled into a sculpin AFPIV, to replace each of its four <i>α</i>-helices in turn, using various computational tools. Additionally, a new linker between the first two helices of AFPIV was designed, based on a flounder AFPI, to boost the ice interaction activity of the mutants. Bioinformatics tools such as ExPASy Prot-Param, Pep-Wheel, SOPMA, GOR IV, Swiss-Model, Phyre2, MODFOLD, MolPropity, and ProQ were used to validate and analyze the structural and functional properties of the model proteins. Furthermore, to evaluate the AFP/ice interaction, molecular dynamics (MD) simulations were executed for 20, 100, and 500 ns at various temperatures using GROMACS software. The primary, secondary, and 3D modeling analysis showed the best model for a redesigned antifreeze protein (AFP1mb, with afp1m in place of the fourth AFPIV helix) with a QMEAN (Swiss-Model) Z score value of 0.36, a confidence of 99.5%, a coverage score of 22%, and a p value of 0.01. The results of the MD simulations illustrated that AFP1mb had more rigidity and better ice interactions as a potential cryoprotectant than the other models; it also displayed enhanced activity in limiting ice growth at different temperatures.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 7-8","pages":"385 - 403"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-024-01719-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Antifreeze proteins (AFPs) have unique features to sustain life in sub-zero environments due to ice recrystallization inhibition (IRI) and thermal hysteresis (TH). AFPs are in demand as agents in cryopreservation, but some antifreeze proteins have low levels of activity. This research aims to improve the cryopreservation activity of an AFPIV. In this in silico study, the helical peptide afp1m from an Antarctic yeast AFP was modeled into a sculpin AFPIV, to replace each of its four α-helices in turn, using various computational tools. Additionally, a new linker between the first two helices of AFPIV was designed, based on a flounder AFPI, to boost the ice interaction activity of the mutants. Bioinformatics tools such as ExPASy Prot-Param, Pep-Wheel, SOPMA, GOR IV, Swiss-Model, Phyre2, MODFOLD, MolPropity, and ProQ were used to validate and analyze the structural and functional properties of the model proteins. Furthermore, to evaluate the AFP/ice interaction, molecular dynamics (MD) simulations were executed for 20, 100, and 500 ns at various temperatures using GROMACS software. The primary, secondary, and 3D modeling analysis showed the best model for a redesigned antifreeze protein (AFP1mb, with afp1m in place of the fourth AFPIV helix) with a QMEAN (Swiss-Model) Z score value of 0.36, a confidence of 99.5%, a coverage score of 22%, and a p value of 0.01. The results of the MD simulations illustrated that AFP1mb had more rigidity and better ice interactions as a potential cryoprotectant than the other models; it also displayed enhanced activity in limiting ice growth at different temperatures.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.