{"title":"The Car1 Knockout Mice Exhibit Antidepressant-like Behaviors Accompanied with Gut Microbiota Disturbance.","authors":"Chong Chen, Jianjun Chen, Ke Cheng, Peng Xie","doi":"10.1007/s12013-024-01509-0","DOIUrl":null,"url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a severe mental disorder with largely unknown mechanisms. Carbonic anhydrases convert CO<sub>2</sub> to carbonates and protons, playing roles in various brain functions. Carbonic anhydrase 1 (Car1) is particularly abundant and may be linked to microbiota at interstitial sites. We developed Car1-deficient mice to explore the relationship between depression-like behaviors and gut microbiota. Behavioral tests confirmed depression-like behavior in Car1<sup>-/-</sup> mice. Fecal samples from Car1<sup>-/-</sup> and WT mice were collected, and 16S rRNA gene sequencing identified distinct microbiota components between the groups. Car1<sup>-/-</sup> mice exhibited significantly increased immobility in the tail suspension test (TST) compared to WT mice. The gut microbiota composition differed at the phylum level in p_Bacteroidetes, p_Verrucomicrobia, p_Firmicutes, and p_Tenericutes. At the family level, Car1<sup>-/-</sup> mice had significantly different abundances in eight microbiota groups compared to WT mice. Car1 deficiency is associated with depressive-like behavior and gut microbiota dysbiosis, potentially linked to depressive-like phenotypes.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01509-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Major depressive disorder (MDD) is a severe mental disorder with largely unknown mechanisms. Carbonic anhydrases convert CO2 to carbonates and protons, playing roles in various brain functions. Carbonic anhydrase 1 (Car1) is particularly abundant and may be linked to microbiota at interstitial sites. We developed Car1-deficient mice to explore the relationship between depression-like behaviors and gut microbiota. Behavioral tests confirmed depression-like behavior in Car1-/- mice. Fecal samples from Car1-/- and WT mice were collected, and 16S rRNA gene sequencing identified distinct microbiota components between the groups. Car1-/- mice exhibited significantly increased immobility in the tail suspension test (TST) compared to WT mice. The gut microbiota composition differed at the phylum level in p_Bacteroidetes, p_Verrucomicrobia, p_Firmicutes, and p_Tenericutes. At the family level, Car1-/- mice had significantly different abundances in eight microbiota groups compared to WT mice. Car1 deficiency is associated with depressive-like behavior and gut microbiota dysbiosis, potentially linked to depressive-like phenotypes.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.