An Investigation on Optical, Larvacidal and Cytotoxicity Analysis of Sulfanilic Acid Single Crystal for Optical and Biomedical Applications.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Punithavathi Manogaran, Thirupathy Jayapalan, Revathi Palanisamy
{"title":"An Investigation on Optical, Larvacidal and Cytotoxicity Analysis of Sulfanilic Acid Single Crystal for Optical and Biomedical Applications.","authors":"Punithavathi Manogaran, Thirupathy Jayapalan, Revathi Palanisamy","doi":"10.1007/s12013-024-01547-8","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfanilic acid (SFA) crystal is well known as an effective material for photonic, electro-optical, harmonic generating and biomedical applications. A well-known nonlinear optical material, a high-quality SFA single crystal made utilizing the slow evaporation solution method (SEST) is the subject of this article. A 75 days development period yielded a transparent SFA single crystal measuring 5 × 5 × 2 mm<sup>3</sup>. The grown crystal used for different characterizations like Single crystal XRD used to find out the cell parameters. Fourier transforms infrared utilized to identify the band assignments. UV-Visible analysis used to detect the absorbance of the crystal and it is utilized for optical application. Photoluminescence studies utilized to recognize the excitation and emission of the grown crystal. Fluorescence used for determining the crystallinity and purity of the sample. The quantitative analysis is verified by using Elemental Dispersive Analysis by X-Rays. Scanning Electron Microscopy utilized to identify the structural and morphological characteristics. To the best of our knowledge, this paper is the first to provide the generated crystal that was used to analyze cytotoxicity and larvacidal activity. Assessment of larvicidal activity was used to ascertain the anti-malarial efficacy. We tested the items on MCF7-Human Breast cancer cell line and MCF7 Vero cells using the MTT Assay to identify the molecular basis of their cytotoxicity in vitro. Biological and optical are two areas that could benefit from the created crystal.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01547-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfanilic acid (SFA) crystal is well known as an effective material for photonic, electro-optical, harmonic generating and biomedical applications. A well-known nonlinear optical material, a high-quality SFA single crystal made utilizing the slow evaporation solution method (SEST) is the subject of this article. A 75 days development period yielded a transparent SFA single crystal measuring 5 × 5 × 2 mm3. The grown crystal used for different characterizations like Single crystal XRD used to find out the cell parameters. Fourier transforms infrared utilized to identify the band assignments. UV-Visible analysis used to detect the absorbance of the crystal and it is utilized for optical application. Photoluminescence studies utilized to recognize the excitation and emission of the grown crystal. Fluorescence used for determining the crystallinity and purity of the sample. The quantitative analysis is verified by using Elemental Dispersive Analysis by X-Rays. Scanning Electron Microscopy utilized to identify the structural and morphological characteristics. To the best of our knowledge, this paper is the first to provide the generated crystal that was used to analyze cytotoxicity and larvacidal activity. Assessment of larvicidal activity was used to ascertain the anti-malarial efficacy. We tested the items on MCF7-Human Breast cancer cell line and MCF7 Vero cells using the MTT Assay to identify the molecular basis of their cytotoxicity in vitro. Biological and optical are two areas that could benefit from the created crystal.

用于光学和生物医学应用的硫氰酸单晶的光学、杀幼虫和细胞毒性分析研究。
众所周知,磺胺酸(SFA)晶体是一种有效的光子、电光、谐波发生和生物医学应用材料。作为一种著名的非线性光学材料,本文的主题是利用慢速蒸发溶液法(SEST)制备高质量的 SFA 单晶。经过 75 天的开发,获得了尺寸为 5 × 5 × 2 mm3 的透明 SFA 单晶体。生长出来的晶体用于不同的表征,如单晶 XRD 用于确定电池参数。傅立叶变换红外线用于确定波段分配。紫外-可见光分析用于检测晶体的吸光度,并将其用于光学应用。光致发光研究用于识别生长晶体的激发和发射。荧光用于确定样品的结晶度和纯度。利用 X 射线元素色散分析法进行定量分析。扫描电子显微镜用于确定结构和形态特征。据我们所知,本文首次提供了用于分析细胞毒性和杀幼虫剂活性的生成晶体。对杀幼虫剂活性的评估用于确定其抗疟功效。我们使用 MTT 分析法对 MCF7 人类乳腺癌细胞系和 MCF7 Vero 细胞进行了测试,以确定其体外细胞毒性的分子基础。生物和光学这两个领域都可以从所创造的晶体中获益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信