LncRNA-SNHG16 Protects Against Oxidative Stress-Induced Vascular Endothelial Cell Injury in Cardiovascular Diseases by Regulating the miR-23a-3p-GLS-Glutamine Metabolism Axis.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yang Wang, Chengxin Zhang, Zhuang Liu, Xiaotian Gao, Shenglin Ge
{"title":"LncRNA-SNHG16 Protects Against Oxidative Stress-Induced Vascular Endothelial Cell Injury in Cardiovascular Diseases by Regulating the miR-23a-3p-GLS-Glutamine Metabolism Axis.","authors":"Yang Wang, Chengxin Zhang, Zhuang Liu, Xiaotian Gao, Shenglin Ge","doi":"10.1007/s12010-024-05077-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases are disorders of the heart and vascular system that cause high mortality rates worldwide. Vascular endothelial cell (VEC) injury caused by oxidative stress (OS) is an important event in the development of various cardiovascular diseases, including ischemic heart disease. This study aimed to investigate the critical roles and molecular mechanisms of long non-coding RNA (lncRNA) SNHG16 in regulating vascular endothelial cell injury under oxidative stress. We demonstrated that SNHG16 was significantly downregulated and miRNA-23a-3p was notably induced in human vascular endothelial cells under OS. Overexpressing SNHG16 or silencing miR-23a-3p effectively mitigated the OS-induced VEC injury. Additionally, glutamine metabolism of VECs was suppressed under OS. SNHG16 protected the OS-suppressed glutamine metabolism, while miR-23a-3p functioned oppositely in VECs. Furthermore, SNHG16 downregulated miR-23a-3p by sponging miR-23a-3p, which direct targeted the glutamine metabolism enzyme, GLS. Finally, restoring miR-23a-3p in SNHG16-overexpressing VECs successfully reversed the protective effect of SNHG16 on vascular endothelial cell injury under OS. In summary, our results revealed the roles and molecular mechanisms of the SNHG16-mediated protection against VEC injury under OS by modulating the miR-23a-3p-GLS pathway.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05077-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases are disorders of the heart and vascular system that cause high mortality rates worldwide. Vascular endothelial cell (VEC) injury caused by oxidative stress (OS) is an important event in the development of various cardiovascular diseases, including ischemic heart disease. This study aimed to investigate the critical roles and molecular mechanisms of long non-coding RNA (lncRNA) SNHG16 in regulating vascular endothelial cell injury under oxidative stress. We demonstrated that SNHG16 was significantly downregulated and miRNA-23a-3p was notably induced in human vascular endothelial cells under OS. Overexpressing SNHG16 or silencing miR-23a-3p effectively mitigated the OS-induced VEC injury. Additionally, glutamine metabolism of VECs was suppressed under OS. SNHG16 protected the OS-suppressed glutamine metabolism, while miR-23a-3p functioned oppositely in VECs. Furthermore, SNHG16 downregulated miR-23a-3p by sponging miR-23a-3p, which direct targeted the glutamine metabolism enzyme, GLS. Finally, restoring miR-23a-3p in SNHG16-overexpressing VECs successfully reversed the protective effect of SNHG16 on vascular endothelial cell injury under OS. In summary, our results revealed the roles and molecular mechanisms of the SNHG16-mediated protection against VEC injury under OS by modulating the miR-23a-3p-GLS pathway.

LncRNA-SNHG16通过调控miR-23a-3p-GLS-谷氨酰胺代谢轴防止氧化应激诱导的心血管疾病血管内皮细胞损伤
心血管疾病是导致全球高死亡率的心脏和血管系统疾病。氧化应激(OS)导致的血管内皮细胞(VEC)损伤是包括缺血性心脏病在内的各种心血管疾病发生发展的重要事件。本研究旨在探讨长非编码RNA(lncRNA)SNHG16在氧化应激下调控血管内皮细胞损伤的关键作用和分子机制。我们发现,SNHG16在OS作用下明显下调,miRNA-23a-3p在人血管内皮细胞中明显诱导。过表达 SNHG16 或沉默 miR-23a-3p 能有效减轻 OS 诱导的血管内皮细胞损伤。此外,OS 还抑制了血管内皮细胞的谷氨酰胺代谢。SNHG16 保护了 OS 抑制的谷氨酰胺代谢,而 miR-23a-3p 则在 VECs 中发挥相反的作用。此外,SNHG16通过疏导miR-23a-3p来下调miR-23a-3p,而miR-23a-3p直接靶向谷氨酰胺代谢酶GLS。最后,在过表达 SNHG16 的血管内皮细胞中恢复 miR-23a-3p 成功地逆转了 SNHG16 对 OS 下血管内皮细胞损伤的保护作用。总之,我们的研究结果揭示了SNHG16通过调节miR-23a-3p-GLS通路来保护血管内皮细胞免受OS损伤的作用和分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信