Han Sol Kim , Minkyoung Kim , Youngjoon Kim , Hyun Ho Shin , Sang-woo Lee , Ji Hyun Ryu
{"title":"Antimicrobial adhesive self-healing hydrogels for efficient dental biofilm removal from periodontal tissue","authors":"Han Sol Kim , Minkyoung Kim , Youngjoon Kim , Hyun Ho Shin , Sang-woo Lee , Ji Hyun Ryu","doi":"10.1016/j.dental.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Oral biofilms, including pathogens such as <em>Porphyromonas gingivalis</em>, are involved in the initiation and progression of various periodontal diseases. However, the treatment of these diseases is hindered by the limited efficacy of many antimicrobial materials in removing biofilms under the harsh conditions of the oral cavity. Our objective is to develop a gel-type antimicrobial agent with optimal physicochemical properties, strong tissue adhesion, prolonged antimicrobial activity, and biocompatibility to serve as an adjunctive treatment for periodontal diseases.</div></div><div><h3>Methods</h3><div>Phenylboronic acid-conjugated alginate (Alg–PBA) was synthesized using a carbodiimide coupling agent. Alg–PBA was then combined with tannic acid (TA) to create an Alg–PBA/TA hydrogel. The composition of the hydrogel was optimized to enhance its mechanical strength and tissue adhesiveness. Additionally, the hydrogel’s self-healing ability, erosion and release profile, biocompatibility, and antimicrobial activity against <em>P. gingivalis</em> were thoroughly characterized.</div></div><div><h3>Results</h3><div>The Alg–PBA/TA hydrogels, with a final concentration of 5 wt% TA, exhibited both mechanical properties comparable to conventional Minocycline gel and strong tissue adhesiveness. In contrast, the Minocycline gel demonstrated negligible tissue adhesion. The Alg–PBA/TA hydrogel also retained its rheological properties under repeated 5 kPa stress owing to its self-healing capability, whereas the Minocycline gel showed irreversible changes in rheology after just one stress cycle. Additionally, Alg–PBA/TA hydrogels displayed a sustained erosion and TA release profile with minimal impact on the surrounding pH. Additionally, the hydrogels exhibited potent antimicrobial activity against <em>P. gingivalis</em>, effectively eliminating its biofilm without compromising the viability of MG-63 cells.</div></div><div><h3>Significance</h3><div>The Alg–PBA/TA hydrogel demonstrates an optimal combination of mechanical strength, self-healing ability, tissue adhesiveness, excellent biocompatibility, and sustained antimicrobial activity against <em>P. gingivalis</em>. These attributes make it superior to conventional Minocycline gel. Thus, the Alg–PBA/TA hydrogel is a promising antiseptic candidate for adjunctive treatment of various periodontal diseases.</div></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"40 11","pages":"Pages 1970-1980"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0109564124002847","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Oral biofilms, including pathogens such as Porphyromonas gingivalis, are involved in the initiation and progression of various periodontal diseases. However, the treatment of these diseases is hindered by the limited efficacy of many antimicrobial materials in removing biofilms under the harsh conditions of the oral cavity. Our objective is to develop a gel-type antimicrobial agent with optimal physicochemical properties, strong tissue adhesion, prolonged antimicrobial activity, and biocompatibility to serve as an adjunctive treatment for periodontal diseases.
Methods
Phenylboronic acid-conjugated alginate (Alg–PBA) was synthesized using a carbodiimide coupling agent. Alg–PBA was then combined with tannic acid (TA) to create an Alg–PBA/TA hydrogel. The composition of the hydrogel was optimized to enhance its mechanical strength and tissue adhesiveness. Additionally, the hydrogel’s self-healing ability, erosion and release profile, biocompatibility, and antimicrobial activity against P. gingivalis were thoroughly characterized.
Results
The Alg–PBA/TA hydrogels, with a final concentration of 5 wt% TA, exhibited both mechanical properties comparable to conventional Minocycline gel and strong tissue adhesiveness. In contrast, the Minocycline gel demonstrated negligible tissue adhesion. The Alg–PBA/TA hydrogel also retained its rheological properties under repeated 5 kPa stress owing to its self-healing capability, whereas the Minocycline gel showed irreversible changes in rheology after just one stress cycle. Additionally, Alg–PBA/TA hydrogels displayed a sustained erosion and TA release profile with minimal impact on the surrounding pH. Additionally, the hydrogels exhibited potent antimicrobial activity against P. gingivalis, effectively eliminating its biofilm without compromising the viability of MG-63 cells.
Significance
The Alg–PBA/TA hydrogel demonstrates an optimal combination of mechanical strength, self-healing ability, tissue adhesiveness, excellent biocompatibility, and sustained antimicrobial activity against P. gingivalis. These attributes make it superior to conventional Minocycline gel. Thus, the Alg–PBA/TA hydrogel is a promising antiseptic candidate for adjunctive treatment of various periodontal diseases.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.