Mengyao Liu, Shenbao Qu, Hongdi Mou, Man Wei, Xia Hu, Aijiang Yang
{"title":"Selective phthalate removal by molecularly imprinted biomass carbon modified electro-Fenton cathode.","authors":"Mengyao Liu, Shenbao Qu, Hongdi Mou, Man Wei, Xia Hu, Aijiang Yang","doi":"10.1016/j.biortech.2024.131548","DOIUrl":null,"url":null,"abstract":"<p><p>A novel molecularly imprinted biomass carbon (MIP@BC) catalyst functionalized with the virtual template of phthalates was designed as the cathode material which possesses excellent 2-electron oxygen reduction ability and H<sub>2</sub>O<sub>2</sub> production capacity, which is suitable for targeted degradation of phthalates in the electro-Fenton system. Following molecularly imprinted modification, the adsorption capacity of MIP@BC for Dimethyl phthalate (DMP) increased by 40 %, reached 9.26 mg/g. Compared with non-imprinted biomass carbon (NIP@BC), the MIP@BC-mediated electro-Fenton process enhanced the degradation rate of DMP by 72 %. Additionally, the degradation rate of DMP rises by 51 % and 104 % respectively on the basis of river water and domestic sewage. The reactive oxygen species that induced DMP degradation were OH and O<sub>2</sub><sup>-</sup> and targeted adsorption and catalysis exert a synergistic effect. This study provides a new insight into targeted degradation for high-toxicity of emerging contaminants from complex aqueous environment.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131548"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131548","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A novel molecularly imprinted biomass carbon (MIP@BC) catalyst functionalized with the virtual template of phthalates was designed as the cathode material which possesses excellent 2-electron oxygen reduction ability and H2O2 production capacity, which is suitable for targeted degradation of phthalates in the electro-Fenton system. Following molecularly imprinted modification, the adsorption capacity of MIP@BC for Dimethyl phthalate (DMP) increased by 40 %, reached 9.26 mg/g. Compared with non-imprinted biomass carbon (NIP@BC), the MIP@BC-mediated electro-Fenton process enhanced the degradation rate of DMP by 72 %. Additionally, the degradation rate of DMP rises by 51 % and 104 % respectively on the basis of river water and domestic sewage. The reactive oxygen species that induced DMP degradation were OH and O2- and targeted adsorption and catalysis exert a synergistic effect. This study provides a new insight into targeted degradation for high-toxicity of emerging contaminants from complex aqueous environment.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.