Xiaoqian Yang, Ruen Yu, Jiahao Liu, Dandan Xiao, Chun Wang, Tiantian Fu, Yuzhang Yang, Kaijing Rong, Yanwei Wang
{"title":"Integrating multiregulatory analysis reveals the negative regulatory function of miR482a in the response of poplar to canker pathogen infection.","authors":"Xiaoqian Yang, Ruen Yu, Jiahao Liu, Dandan Xiao, Chun Wang, Tiantian Fu, Yuzhang Yang, Kaijing Rong, Yanwei Wang","doi":"10.1111/tpj.17039","DOIUrl":null,"url":null,"abstract":"<p><p>Canker disease caused by the bacterium Lonsdalea populi is one of the most destructive diseases affecting poplar stems. However, the detailed stress response mechanisms of poplar have not been widely characterized. To explore the diverse regulatory RNA landscape and the function of key regulators in poplar subjected to L. populi stress, we integrated time-course experiment with mock-inoculation (CK) and inoculation (IN) with L. populi at the first, third, and sixth day (IN1, IN3, IN6) on Populus × euramericana cv. '74/76' (107), small RNA-seq, whole transcriptome-wide analysis, degradome analysis and transgenic experiments. A total of 98 differentially expressed (DE) miRNA, 17 974 DEmRNA, and 807 DElncRNA were identified in poplar infected by L. populi, presenting dynamic changes over the infection course. Regulatory networks among RNAs were further constructed. Notably, a network centered on ptc-miR482a in CK-vs-IN3 contained most DEGs. We show that miR482a and miR1448 are located in one transcript as a polycistron. Overexpression of pre-miR482a-miR1448 (OX482-1448) and pre-miR482a (OX482) increased poplar susceptibility to canker pathogen with reduced accumulation of reactive oxygen species, while the suppression of miR482a (STTM482) conferred poplar disease resistance. PHA7 was validated as the target of miR482a with degradome sequencing and tobacco transient co-transformation, its expression being downregulated in OX482-1448 and OX482 lines. Additionally, a series of phasiRNAs were triggered by miR482a targeting PHA7, forming regulatory cascades with more RLP, NBS-LRR, and PK genes, further verifying the defense function of miR482a. These findings provide insights for understanding the roles of ncRNAs and regulatory networks involved in poplar immunity.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17039","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Canker disease caused by the bacterium Lonsdalea populi is one of the most destructive diseases affecting poplar stems. However, the detailed stress response mechanisms of poplar have not been widely characterized. To explore the diverse regulatory RNA landscape and the function of key regulators in poplar subjected to L. populi stress, we integrated time-course experiment with mock-inoculation (CK) and inoculation (IN) with L. populi at the first, third, and sixth day (IN1, IN3, IN6) on Populus × euramericana cv. '74/76' (107), small RNA-seq, whole transcriptome-wide analysis, degradome analysis and transgenic experiments. A total of 98 differentially expressed (DE) miRNA, 17 974 DEmRNA, and 807 DElncRNA were identified in poplar infected by L. populi, presenting dynamic changes over the infection course. Regulatory networks among RNAs were further constructed. Notably, a network centered on ptc-miR482a in CK-vs-IN3 contained most DEGs. We show that miR482a and miR1448 are located in one transcript as a polycistron. Overexpression of pre-miR482a-miR1448 (OX482-1448) and pre-miR482a (OX482) increased poplar susceptibility to canker pathogen with reduced accumulation of reactive oxygen species, while the suppression of miR482a (STTM482) conferred poplar disease resistance. PHA7 was validated as the target of miR482a with degradome sequencing and tobacco transient co-transformation, its expression being downregulated in OX482-1448 and OX482 lines. Additionally, a series of phasiRNAs were triggered by miR482a targeting PHA7, forming regulatory cascades with more RLP, NBS-LRR, and PK genes, further verifying the defense function of miR482a. These findings provide insights for understanding the roles of ncRNAs and regulatory networks involved in poplar immunity.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.