Investigation of new analysis methods for simultaneous and rapid identification of five different microplastics using ATR-FTIR spectroscopy and chemometrics.
{"title":"Investigation of new analysis methods for simultaneous and rapid identification of five different microplastics using ATR-FTIR spectroscopy and chemometrics.","authors":"İsmail Tarhan, Hafize Merve Kestek","doi":"10.1016/j.envpol.2024.125043","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastic (MP) pollution in water has become one of the most important global problems of our time. The development of appropriate and rapid analysis techniques is of great importance at the beginning of the studies aimed at solving this problem. In the presented study, in order to perform the qualitative and quantitative analysis of MP forms of polyamide (PA), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET), which are known to be most abundant in water, in a fast and easy way, new Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy methods were tried to be developed by utilizing chemometric methods. While principal component analysis (PCA) was applied for qualitative analyses, partial least squares (PLS) models were created for quantitative analyses. Raw, 1st, and 2nd order derivatives of all spectra and their spectra with different levels of smoothing points were taken and 24 different chemometric models were created for each MP. In interpreting the statistical performances of the developed PCA and PLS models, different parameters were used. According to the obtained results, the qualitative discrimination of all polymer types was successfully achieved. It was determined that the PLS models developed for the quantitative determination of mixtures consisting of different concentrations of MP types could not be at the desired level. However, it was determined that the PLS models developed for PA, PE, PP, and PET, where the normal spectrum was used, could give quantitatively accurate results, albeit partially.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"125043"},"PeriodicalIF":7.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125043","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastic (MP) pollution in water has become one of the most important global problems of our time. The development of appropriate and rapid analysis techniques is of great importance at the beginning of the studies aimed at solving this problem. In the presented study, in order to perform the qualitative and quantitative analysis of MP forms of polyamide (PA), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET), which are known to be most abundant in water, in a fast and easy way, new Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy methods were tried to be developed by utilizing chemometric methods. While principal component analysis (PCA) was applied for qualitative analyses, partial least squares (PLS) models were created for quantitative analyses. Raw, 1st, and 2nd order derivatives of all spectra and their spectra with different levels of smoothing points were taken and 24 different chemometric models were created for each MP. In interpreting the statistical performances of the developed PCA and PLS models, different parameters were used. According to the obtained results, the qualitative discrimination of all polymer types was successfully achieved. It was determined that the PLS models developed for the quantitative determination of mixtures consisting of different concentrations of MP types could not be at the desired level. However, it was determined that the PLS models developed for PA, PE, PP, and PET, where the normal spectrum was used, could give quantitatively accurate results, albeit partially.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.