Synergistic Effect Between 0D CQDs and 2D MXene to Enhance the Photothermal Conversion of Hydrogel Evaporators for Efficient Solar Water Evaporation, Photothermal Sensing and Electricity Generation

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-09-30 DOI:10.1002/smll.202405587
Xinyu Jing, Lizhi Chen, Yancai Li, Hongyan Yin, Jiaying Chen, Mengyao Su, Fangfei Liu, Tursun Abdiryim, Feng Xu, Jiangan You, Xiong Liu
{"title":"Synergistic Effect Between 0D CQDs and 2D MXene to Enhance the Photothermal Conversion of Hydrogel Evaporators for Efficient Solar Water Evaporation, Photothermal Sensing and Electricity Generation","authors":"Xinyu Jing,&nbsp;Lizhi Chen,&nbsp;Yancai Li,&nbsp;Hongyan Yin,&nbsp;Jiaying Chen,&nbsp;Mengyao Su,&nbsp;Fangfei Liu,&nbsp;Tursun Abdiryim,&nbsp;Feng Xu,&nbsp;Jiangan You,&nbsp;Xiong Liu","doi":"10.1002/smll.202405587","DOIUrl":null,"url":null,"abstract":"<p>Solar-powered interfacial water evaporation is a promising technique for alleviating freshwater stress. However, the evaporation performance of solar evaporators is still constrained by low photothermal conversion efficiency and high water evaporation enthalpy. Herein, 0D carbon quantum dots (CQDs) are combined with 2D MXene to serve as a hybrid photothermal material to enhance the light absorption and photothermal conversion ability, meanwhile sodium carboxymethyl cellulose (CMC)/polyacrylamide (PAM) hydrogels are used as a substrate material for water transport to reduce the enthalpy of water evaporation. The synergistic effect in 0D CQDs/2D MXene hybrid photothermal materials accelerate the carrier transfer, inducing efficient localized surface plasmon resonance (LSPR) effect. This results in the enhanced photothermal conversion efficiency. The integrated hydrogel evaporators demonstrate a high evaporation rate (1.93 and 2.86 kg m<sup>−2</sup> h<sup>−1</sup> under 1 and 2 sunlights, respectively) and low evaporation enthalpy (1485 J g<sup>−1</sup>). In addition, the hydrogel evaporators are applied for photothermal sensing and temperature difference power generation (TEG). The TEG device presents an efficient output power density (230.7 mW m<sup>−2</sup>) under 1 sunlight. This work provides a feasible approach for regulating and controlling the evaporation performances of hydrogel evaporators, and gives a proof-of-concept for the design of multipurpose solar evaporation systems.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 50","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202405587","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-powered interfacial water evaporation is a promising technique for alleviating freshwater stress. However, the evaporation performance of solar evaporators is still constrained by low photothermal conversion efficiency and high water evaporation enthalpy. Herein, 0D carbon quantum dots (CQDs) are combined with 2D MXene to serve as a hybrid photothermal material to enhance the light absorption and photothermal conversion ability, meanwhile sodium carboxymethyl cellulose (CMC)/polyacrylamide (PAM) hydrogels are used as a substrate material for water transport to reduce the enthalpy of water evaporation. The synergistic effect in 0D CQDs/2D MXene hybrid photothermal materials accelerate the carrier transfer, inducing efficient localized surface plasmon resonance (LSPR) effect. This results in the enhanced photothermal conversion efficiency. The integrated hydrogel evaporators demonstrate a high evaporation rate (1.93 and 2.86 kg m−2 h−1 under 1 and 2 sunlights, respectively) and low evaporation enthalpy (1485 J g−1). In addition, the hydrogel evaporators are applied for photothermal sensing and temperature difference power generation (TEG). The TEG device presents an efficient output power density (230.7 mW m−2) under 1 sunlight. This work provides a feasible approach for regulating and controlling the evaporation performances of hydrogel evaporators, and gives a proof-of-concept for the design of multipurpose solar evaporation systems.

Abstract Image

Abstract Image

0D CQDs 与 2D MXene 的协同效应可增强水凝胶蒸发器的光热转换,从而实现高效太阳能水蒸发、光热传感和发电。
太阳能驱动的界面水蒸发是一种缓解淡水压力的有前途的技术。然而,太阳能蒸发器的蒸发性能仍然受到光热转换效率低和水蒸发焓高的制约。本文将0D碳量子点(CQDs)与二维MXene结合作为混合光热材料,以增强光吸收和光热转换能力,同时将羧甲基纤维素钠(CMC)/聚丙烯酰胺(PAM)水凝胶作为水传输的基底材料,以降低水蒸发焓。0D CQDs/2D MXene 混合光热材料中的协同效应加速了载流子的转移,诱导了高效的局部表面等离子体共振(LSPR)效应。这就提高了光热转换效率。集成的水凝胶蒸发器具有较高的蒸发率(在 1 次和 2 次太阳光照射下分别为 1.93 和 2.86 kg m-2 h-1)和较低的蒸发焓(1485 J g-1)。此外,水凝胶蒸发器还可用于光热传感和温差发电(TEG)。温差发电装置在 1 太阳光下具有高效的输出功率密度(230.7 mW m-2)。这项研究为调节和控制水凝胶蒸发器的蒸发性能提供了一种可行的方法,并为多用途太阳能蒸发系统的设计提供了概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
文献相关原料
公司名称
产品信息
阿拉丁
sodium carboxymethylcellulose (CMC)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信