Inorganic-Enriched Solid Electrolyte Interphases: A Key to Enhance Sodium-Ion Battery Cycle Stability?

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-09-30 DOI:10.1002/smll.202407425
Zhiyuan Guo, Mei Yang, Qi Fan, Yuting Chen, Teng Xu, Chenying Li, Zhengyang Li, Zhiyuan Li, Qin Sun, Hui Xia
{"title":"Inorganic-Enriched Solid Electrolyte Interphases: A Key to Enhance Sodium-Ion Battery Cycle Stability?","authors":"Zhiyuan Guo, Mei Yang, Qi Fan, Yuting Chen, Teng Xu, Chenying Li, Zhengyang Li, Zhiyuan Li, Qin Sun, Hui Xia","doi":"10.1002/smll.202407425","DOIUrl":null,"url":null,"abstract":"<p><p>The characteristics of solid electrolyte interphase (SEI) at both the cathode and anode interfaces are crucial for the performance of sodium-ion batteries (SIBs). The research demonstrates the merits of a balanced organic component, specifically the organic sodium alkyl sulfonate (ROSO<sub>2</sub>Na) featured in this work, in conjunction with the inorganic sodium fluoride (NaF), to enhance the interfacial stability. Using a customized electrolyte, it has optimized the interphase, curbing excess NaF production, and created a thin and uniform NaF/ROSO<sub>2</sub>Na-rich SEI layer. It offers exceptional protection against interface deterioration, transition metal dissolution, and concurrently ensures a consistent reduction in interfacial impedance. This creative approach results in a substantial improvement in the performance of both the Na<sub>0.9</sub>Ni<sub>0.4</sub>Fe<sub>0.2</sub>Mn<sub>0.4</sub>O<sub>2</sub> cathode and the hard carbon anode. The cathode demonstrates remarkable average Coulombic efficiency exceeding 99.9% and a capacity retention of 81% after 500 cycles. Furthermore, the Ah-level pouch cell has shown outstanding performance with an 87% capacity retention after 400 cycles. Moving beyond the prevailing focus on inorganic-rich SEI, these results highlight the effectiveness of the customized organic-inorganic hybrid SEI formulation in improving SIB technology, offering an adaptable solution that ensures superior interfacial stability.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407425","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The characteristics of solid electrolyte interphase (SEI) at both the cathode and anode interfaces are crucial for the performance of sodium-ion batteries (SIBs). The research demonstrates the merits of a balanced organic component, specifically the organic sodium alkyl sulfonate (ROSO2Na) featured in this work, in conjunction with the inorganic sodium fluoride (NaF), to enhance the interfacial stability. Using a customized electrolyte, it has optimized the interphase, curbing excess NaF production, and created a thin and uniform NaF/ROSO2Na-rich SEI layer. It offers exceptional protection against interface deterioration, transition metal dissolution, and concurrently ensures a consistent reduction in interfacial impedance. This creative approach results in a substantial improvement in the performance of both the Na0.9Ni0.4Fe0.2Mn0.4O2 cathode and the hard carbon anode. The cathode demonstrates remarkable average Coulombic efficiency exceeding 99.9% and a capacity retention of 81% after 500 cycles. Furthermore, the Ah-level pouch cell has shown outstanding performance with an 87% capacity retention after 400 cycles. Moving beyond the prevailing focus on inorganic-rich SEI, these results highlight the effectiveness of the customized organic-inorganic hybrid SEI formulation in improving SIB technology, offering an adaptable solution that ensures superior interfacial stability.

Abstract Image

富含无机物的固体电解质相间层:提高钠离子电池循环稳定性的关键?
阴极和阳极界面的固体电解质相间物(SEI)的特性对于钠离子电池(SIB)的性能至关重要。这项研究证明了平衡有机成分(特别是本研究中的有机烷基磺酸钠 (ROSO2Na))与无机氟化钠 (NaF) 结合使用可增强界面稳定性的优点。通过使用定制的电解液,它优化了相间,抑制了过量 NaF 的产生,并形成了薄而均匀的富含 NaF/ROSO2Na 的 SEI 层。它为防止界面劣化和过渡金属溶解提供了卓越的保护,同时确保了界面阻抗的持续降低。这种创新方法大大提高了 Na0.9Ni0.4Fe0.2Mn0.4O2 阴极和硬碳阳极的性能。阴极的平均库仑效率超过 99.9%,500 个循环后的容量保持率达到 81%。此外,Ah 级袋式电池表现出色,400 次循环后容量保持率达 87%。这些结果超越了目前对富含无机 SEI 的关注,凸显了定制的有机-无机混合 SEI 配方在改进 SIB 技术方面的有效性,提供了一种可确保卓越界面稳定性的适应性解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信