Visible-Light-Promoted Reduction of Nitroarenes with Formate Salts as Reductants

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jun-Yue Wu, Yuan-Cui Wan, Yu Shao, Le-Wu Zhan, Bin-Dong Li, Jing Hou
{"title":"Visible-Light-Promoted Reduction of Nitroarenes with Formate Salts as Reductants","authors":"Jun-Yue Wu,&nbsp;Yuan-Cui Wan,&nbsp;Yu Shao,&nbsp;Le-Wu Zhan,&nbsp;Bin-Dong Li,&nbsp;Jing Hou","doi":"10.1002/chem.202402870","DOIUrl":null,"url":null,"abstract":"<p>A visible-light-promoted reduction of nitrobenzenes using formate salts as the reductant was developed. A wide range of nitrobenzenes can be converted into aniline products in a transition metal free fashion. Mechanistic studies revealed that radical species (carbon dioxide radical anion and thiol radical) are key intermediates for the transformation. We anticipate that this method will provide a valuable and green strategy for the reduction of nitrobenzenes.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":"30 69","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chem.202402870","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A visible-light-promoted reduction of nitrobenzenes using formate salts as the reductant was developed. A wide range of nitrobenzenes can be converted into aniline products in a transition metal free fashion. Mechanistic studies revealed that radical species (carbon dioxide radical anion and thiol radical) are key intermediates for the transformation. We anticipate that this method will provide a valuable and green strategy for the reduction of nitrobenzenes.

Abstract Image

以甲酸盐为还原剂的可见光促进硝基烯烃还原。
以甲酸盐为还原剂,开发了一种可见光促进的硝基苯还原法。多种硝基苯都能以不含过渡金属的方式转化为苯胺产品。机理研究表明,自由基物种(二氧化碳自由基阴离子和硫醇自由基)是转化的关键中间体。我们预计这种方法将为硝基苯的还原提供一种有价值的绿色策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信