{"title":"Transition-Metal Free Amination and Hydrodefluorination of Aryl Fluorides Promoted by Solvated Electrons","authors":"Anietie W. Williams, Kerry M. Gilmore","doi":"10.1002/chem.202403410","DOIUrl":null,"url":null,"abstract":"<p>Cross-coupling reactions for constructing C−N bonds represent a pivotal advancement in chemical science. Traditional methodologies, including nucleophilic aromatic substitution (SNAr) and transition metal-catalyzed cross-couplings, have limitations concerning aryl scope, reliance on toxic and costly transition-metal catalysts, and issues related to atom economy and waste generation from ligands and additives. In this work, we introduce a novel method for aminating neutral, electron-rich, and electron-deficient aryl halides, eliminating the need for transition metals. Our approach involves the activation of aryl halides using solvated electrons generated from granulated lithium and sonication. This serves as a sustainable source of reducing power, facilitating the efficient formation of C−N bonds under near ambient conditions. Competitive selectivity studies between halide and ester functionalities were explored. Reaction scope and conducted mechanistic studies which supported the proposed radical-nucleophilic substitution (SRN<sub>1</sub>) mechanism for the reaction. Notably, the developed reaction has a highly competitive reductive dehalogenation pathway during the C−N coupling reaction, and this mechanistic divergency was thoroughly explored. This work not only broadens the scope of C−N coupling reactions which typically employs aryl bromides and iodides and rarely aryl fluorides which is also equally abundant, but also introduces a new way to do C−N coupling reactions using solvated electrons.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":"30 70","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chem.202403410","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-coupling reactions for constructing C−N bonds represent a pivotal advancement in chemical science. Traditional methodologies, including nucleophilic aromatic substitution (SNAr) and transition metal-catalyzed cross-couplings, have limitations concerning aryl scope, reliance on toxic and costly transition-metal catalysts, and issues related to atom economy and waste generation from ligands and additives. In this work, we introduce a novel method for aminating neutral, electron-rich, and electron-deficient aryl halides, eliminating the need for transition metals. Our approach involves the activation of aryl halides using solvated electrons generated from granulated lithium and sonication. This serves as a sustainable source of reducing power, facilitating the efficient formation of C−N bonds under near ambient conditions. Competitive selectivity studies between halide and ester functionalities were explored. Reaction scope and conducted mechanistic studies which supported the proposed radical-nucleophilic substitution (SRN1) mechanism for the reaction. Notably, the developed reaction has a highly competitive reductive dehalogenation pathway during the C−N coupling reaction, and this mechanistic divergency was thoroughly explored. This work not only broadens the scope of C−N coupling reactions which typically employs aryl bromides and iodides and rarely aryl fluorides which is also equally abundant, but also introduces a new way to do C−N coupling reactions using solvated electrons.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.