{"title":"Inherent Temporal Metamaterials with Unique Time-Varying Stiffness and Damping","authors":"Zhiyuan Liu, Kaijun Yi, Haopeng Sun, Rui Zhu, Xiaoming Zhou, Gengkai Hu, Guoliang Huang","doi":"10.1002/advs.202404695","DOIUrl":null,"url":null,"abstract":"<p>Time-varying metamaterials offer new degrees of freedom for wave manipulation and enable applications unattainable with conventional materials. In these metamaterials, the pattern of temporal inhomogeneity is crucial for effective wave control. However, existing studies have only demonstrated abrupt changes in properties within a limited range or time modulation following simple patterns. This study presents the design, construction, and characterization of a novel temporal elastic metamaterial with complex time-varying constitutive parameters induced by self-reconfigurable virtual resonators (VRs). These VRs, achieved by simulating the resonating behavior of mechanical resonators in digital space, function as virtualized meta-atoms. The autonomously time-varying VRs cause significant temporal variations in both the stiffness and loss factor of the metamaterial. By programming the time-domain behavior of the VRs, the metamaterial's constitutive parameters can be modulated according to desired periodic or aperiodic patterns. The proposed time-varying metamaterial has demonstrated capabilities in shaping the amplitudes and frequency spectra of waves in the time domain. This work not only facilitates the development of materials with sophisticated time-varying properties but also opens new avenues for low-frequency signal processing in future communication systems.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 43","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578320/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202404695","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Time-varying metamaterials offer new degrees of freedom for wave manipulation and enable applications unattainable with conventional materials. In these metamaterials, the pattern of temporal inhomogeneity is crucial for effective wave control. However, existing studies have only demonstrated abrupt changes in properties within a limited range or time modulation following simple patterns. This study presents the design, construction, and characterization of a novel temporal elastic metamaterial with complex time-varying constitutive parameters induced by self-reconfigurable virtual resonators (VRs). These VRs, achieved by simulating the resonating behavior of mechanical resonators in digital space, function as virtualized meta-atoms. The autonomously time-varying VRs cause significant temporal variations in both the stiffness and loss factor of the metamaterial. By programming the time-domain behavior of the VRs, the metamaterial's constitutive parameters can be modulated according to desired periodic or aperiodic patterns. The proposed time-varying metamaterial has demonstrated capabilities in shaping the amplitudes and frequency spectra of waves in the time domain. This work not only facilitates the development of materials with sophisticated time-varying properties but also opens new avenues for low-frequency signal processing in future communication systems.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.