Alkali-Stable Metal-Organic Frameworks with Enhanced Electroconductivity for Black-Brown Electrochromic Energy Storage Smart Window.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinyi Wang, Zhiqiang Liu, Heqi Ma, Yiwen Liu, Qing Sui, Jifei Feng, Guofa Cai
{"title":"Alkali-Stable Metal-Organic Frameworks with Enhanced Electroconductivity for Black-Brown Electrochromic Energy Storage Smart Window.","authors":"Xinyi Wang, Zhiqiang Liu, Heqi Ma, Yiwen Liu, Qing Sui, Jifei Feng, Guofa Cai","doi":"10.1002/advs.202407297","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-organic frameworks (MOFs) deliver potential applications in electrochromism and energy storage. However, the poor intrinsic conductivity of MOFs in electrolytes seriously hampers the development of the above-mentioned electrochemical applications, especially in one MOF electrode. Herein, a new Ni-based MOF (denoted Ni-DPNDI) is proposed with enhanced conductivity by π-delocalized DPNDI connectors. Predictably, the obtained Ni-DPNDI MOF achieves a conductivity of up to 4.63 S∙m<sup>-1</sup> at 300 K. Profiting from its unique electronic structure, the Ni-DPNDI MOF delivers excellent electrochromic and energy storage performance with a great optical modulation (60.8%), a fast switching speed (t<sub>c</sub> = 7.9 s and t<sub>b</sub> = 6.4 s), a moderate specific capacitance (25.3 mAh·g<sup>-1</sup>) and good cycle stability over 2000 times. Meanwhile, energy storage capacity is visual by the coloration states of Ni-DPNDI film. As a proof of the potential application, a large-area (100 cm<sup>2</sup>) electrochromic energy storage smart window is further designed and displayed. The strategy provides an interesting alternative to porous multifunctional materials for the new generation of electronic devices with diverse applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202407297","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks (MOFs) deliver potential applications in electrochromism and energy storage. However, the poor intrinsic conductivity of MOFs in electrolytes seriously hampers the development of the above-mentioned electrochemical applications, especially in one MOF electrode. Herein, a new Ni-based MOF (denoted Ni-DPNDI) is proposed with enhanced conductivity by π-delocalized DPNDI connectors. Predictably, the obtained Ni-DPNDI MOF achieves a conductivity of up to 4.63 S∙m-1 at 300 K. Profiting from its unique electronic structure, the Ni-DPNDI MOF delivers excellent electrochromic and energy storage performance with a great optical modulation (60.8%), a fast switching speed (tc = 7.9 s and tb = 6.4 s), a moderate specific capacitance (25.3 mAh·g-1) and good cycle stability over 2000 times. Meanwhile, energy storage capacity is visual by the coloration states of Ni-DPNDI film. As a proof of the potential application, a large-area (100 cm2) electrochromic energy storage smart window is further designed and displayed. The strategy provides an interesting alternative to porous multifunctional materials for the new generation of electronic devices with diverse applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信