ProT-Diff: A Modularized and Efficient Strategy for De Novo Generation of Antimicrobial Peptide Sequences by Integrating Protein Language and Diffusion Models.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xue-Fei Wang, Jing-Ya Tang, Jing Sun, Sonam Dorje, Tian-Qi Sun, Bo Peng, Xu-Wo Ji, Zhe Li, Xian-En Zhang, Dian-Bing Wang
{"title":"ProT-Diff: A Modularized and Efficient Strategy for De Novo Generation of Antimicrobial Peptide Sequences by Integrating Protein Language and Diffusion Models.","authors":"Xue-Fei Wang, Jing-Ya Tang, Jing Sun, Sonam Dorje, Tian-Qi Sun, Bo Peng, Xu-Wo Ji, Zhe Li, Xian-En Zhang, Dian-Bing Wang","doi":"10.1002/advs.202406305","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are a promising solution for treating antibiotic-resistant pathogens. However, efficient generation of diverse AMPs without prior knowledge of peptide structures or sequence alignments remains a challenge. Here, ProT-Diff is introduced, a modularized deep generative approach that combines a pretrained protein language model with a diffusion model for the de novo generation of AMPs sequences. ProT-Diff generates thousands of AMPs with diverse lengths and structures within a few hours. After silico physicochemical screening, 45 peptides are selected for experimental validation. Forty-four peptides showed antimicrobial activity against both gram-positive or gram-negative bacteria. Among broad-spectrum peptides, AMP_2 exhibited potent antimicrobial activity, low hemolysis, and minimal cytotoxicity. An in vivo assessment demonstrated its effectiveness against a drug-resistant E. coli strain in acute peritonitis. This study not only introduces a viable and user-friendly strategy for de novo generation of antimicrobial peptides, but also provides potential antimicrobial drug candidates with excellent activity. It is believed that this study will facilitate the development of other peptide-based drug candidates in the future, as well as proteins with tailored characteristics.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202406305","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) are a promising solution for treating antibiotic-resistant pathogens. However, efficient generation of diverse AMPs without prior knowledge of peptide structures or sequence alignments remains a challenge. Here, ProT-Diff is introduced, a modularized deep generative approach that combines a pretrained protein language model with a diffusion model for the de novo generation of AMPs sequences. ProT-Diff generates thousands of AMPs with diverse lengths and structures within a few hours. After silico physicochemical screening, 45 peptides are selected for experimental validation. Forty-four peptides showed antimicrobial activity against both gram-positive or gram-negative bacteria. Among broad-spectrum peptides, AMP_2 exhibited potent antimicrobial activity, low hemolysis, and minimal cytotoxicity. An in vivo assessment demonstrated its effectiveness against a drug-resistant E. coli strain in acute peritonitis. This study not only introduces a viable and user-friendly strategy for de novo generation of antimicrobial peptides, but also provides potential antimicrobial drug candidates with excellent activity. It is believed that this study will facilitate the development of other peptide-based drug candidates in the future, as well as proteins with tailored characteristics.

ProT-Diff:通过整合蛋白质语言和扩散模型从新生成抗菌肽序列的模块化高效策略。
抗菌肽(AMPs)是治疗抗生素耐药性病原体的一种前景广阔的解决方案。然而,在事先不了解肽结构或序列比对的情况下高效生成多样化的 AMPs 仍然是一项挑战。这里介绍的 ProT-Diff 是一种模块化深度生成方法,它将预训练的蛋白质语言模型与扩散模型相结合,用于从头生成 AMPs 序列。ProT-Diff 能在几小时内生成数千个长度和结构各异的 AMPs。经过硅理化筛选,选出 45 种肽段进行实验验证。其中 44 种肽对革兰氏阳性或阴性细菌都具有抗菌活性。在广谱多肽中,AMP_2 表现出强大的抗菌活性、较低的溶血率和最小的细胞毒性。一项体内评估表明,它对急性腹膜炎中的耐药大肠杆菌株有效。这项研究不仅为从头生成抗菌肽引入了一种可行且易于使用的策略,而且还提供了具有卓越活性的潜在候选抗菌药物。相信这项研究将有助于今后开发其他基于多肽的候选药物以及具有定制特性的蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信