Lisi Chen, Mei Chen, Yeying Lan, Yongxin Chang, Xianfeng Qiao, Chunlan Tao, Xiaolong Zhao, Dongdong Qin, Yuwei Zhang, Baohua Zhang and Li Niu
{"title":"Efficient solution-processed fluorescent OLEDs realized by removing charge trapping emission loss of BODIPY fluorochrome†","authors":"Lisi Chen, Mei Chen, Yeying Lan, Yongxin Chang, Xianfeng Qiao, Chunlan Tao, Xiaolong Zhao, Dongdong Qin, Yuwei Zhang, Baohua Zhang and Li Niu","doi":"10.1039/D4MH00859F","DOIUrl":null,"url":null,"abstract":"<p >The thermally activated delayed fluorescence (TADF)-sensitized fluorescent (TSF) dye strategy has been used successfully in thermally evaporated organic light-emitting diodes (eOLEDs), but the development of solution-processed TSF-OLEDs (TSF-sOLEDs) is still very limited to date. Previously, the introduction of electronically inert shielding terminal groups for TADF sensitizer and/or fluorescent dyes was commonly used in TSF-sOLEDs, which aimed to achieve sufficient Förster energy transfer (FET) while restraining notorious Dexter energy transfer (DET) at a high doping concentration of fluorescent dyes. However, this approach has not yet enabled efficient TSF-sOLEDs owing to severe charge trapping emission (CTE) for triplet loss. In this study, by simply utilizing highly efficient boron-dipyrromethene derivatives (BODIPYs) that simultaneously feature high fluorescent quantum efficiency and narrow-band emission spectra, we developed highly efficient and super color-purity TSF-sOLEDs using a 0.1 wt% ultralow doping strategy. As confirmed, the resultant ultralow doping TSF-sOLEDs achieved sufficient FET from sensitizer to fluorochrome without noticeable CTE issues. The device achieves record maximum external quantum efficiency (EQE<small><sub>max</sub></small>) and current efficiency (CE<small><sub>max</sub></small>) of 21.5% and 78.8 cd A<small><sup>−1</sup></small>, respectively, and an ultrapure green emission with Commission International de l’Eclairage (CIE) coordinates of (0.28, 0.65). This study validates the new device architecture of ultralow doping TSF-sOLEDs, which paves the way for future development of high-resolution TSF-sOLED displays <em>via</em> a simple solution-processed manufacturing approach.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 23","pages":" 6126-6140"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d4mh00859f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The thermally activated delayed fluorescence (TADF)-sensitized fluorescent (TSF) dye strategy has been used successfully in thermally evaporated organic light-emitting diodes (eOLEDs), but the development of solution-processed TSF-OLEDs (TSF-sOLEDs) is still very limited to date. Previously, the introduction of electronically inert shielding terminal groups for TADF sensitizer and/or fluorescent dyes was commonly used in TSF-sOLEDs, which aimed to achieve sufficient Förster energy transfer (FET) while restraining notorious Dexter energy transfer (DET) at a high doping concentration of fluorescent dyes. However, this approach has not yet enabled efficient TSF-sOLEDs owing to severe charge trapping emission (CTE) for triplet loss. In this study, by simply utilizing highly efficient boron-dipyrromethene derivatives (BODIPYs) that simultaneously feature high fluorescent quantum efficiency and narrow-band emission spectra, we developed highly efficient and super color-purity TSF-sOLEDs using a 0.1 wt% ultralow doping strategy. As confirmed, the resultant ultralow doping TSF-sOLEDs achieved sufficient FET from sensitizer to fluorochrome without noticeable CTE issues. The device achieves record maximum external quantum efficiency (EQEmax) and current efficiency (CEmax) of 21.5% and 78.8 cd A−1, respectively, and an ultrapure green emission with Commission International de l’Eclairage (CIE) coordinates of (0.28, 0.65). This study validates the new device architecture of ultralow doping TSF-sOLEDs, which paves the way for future development of high-resolution TSF-sOLED displays via a simple solution-processed manufacturing approach.