Shujia Li , Laijun Sun , Xiuliang Jin , Guojun Feng , Lingyu Zhang , Hongyi Bai , Ziyue Wang
{"title":"Research on variety identification of common bean seeds based on hyperspectral and deep learning","authors":"Shujia Li , Laijun Sun , Xiuliang Jin , Guojun Feng , Lingyu Zhang , Hongyi Bai , Ziyue Wang","doi":"10.1016/j.saa.2024.125212","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate, fast and non-destructive identification of varieties of common bean seeds is important for the cultivation and efficient utilization of common beans. This study is based on hyperspectral and deep learning to identify the varieties of common bean seeds non-destructively. In this study, the average spectrum of 3078 hyperspectral images from 500 varieties was obtained after image segmentation and sensitive region extraction, and the Synthetic Minority Over-sampling Technique (SMOTE) was used to achieve the equilibrium of the samples of various varieties. A one-dimensional convolutional neural network model (IResCNN) incorporating Inception module and residual structure was proposed to identify seed varieties, and Support Vector Machine (SVM), K-Nearest Neighbor (KNN), VGG19, AlexNet, ResNet50 were established to compare the identification effect. After analyzing the effects of multiple spectral preprocessing methods on the model, the study selected Savitzky-Golay smoothing correction (SG) for spectral preprocessing and extracted 66 characteristic wavelengths using Successive Projections Algorithm (SPA) as inputs to the discriminative model. Ultimately, the IResCNN model achieved the highest accuracy of 93.06 % on the test set, indicating that hyperspectral technology can accurately identify bean varieties, and the study provides a correct method of thinking for the non-destructive classification of multi-species small-sample bean varieties.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524013787","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate, fast and non-destructive identification of varieties of common bean seeds is important for the cultivation and efficient utilization of common beans. This study is based on hyperspectral and deep learning to identify the varieties of common bean seeds non-destructively. In this study, the average spectrum of 3078 hyperspectral images from 500 varieties was obtained after image segmentation and sensitive region extraction, and the Synthetic Minority Over-sampling Technique (SMOTE) was used to achieve the equilibrium of the samples of various varieties. A one-dimensional convolutional neural network model (IResCNN) incorporating Inception module and residual structure was proposed to identify seed varieties, and Support Vector Machine (SVM), K-Nearest Neighbor (KNN), VGG19, AlexNet, ResNet50 were established to compare the identification effect. After analyzing the effects of multiple spectral preprocessing methods on the model, the study selected Savitzky-Golay smoothing correction (SG) for spectral preprocessing and extracted 66 characteristic wavelengths using Successive Projections Algorithm (SPA) as inputs to the discriminative model. Ultimately, the IResCNN model achieved the highest accuracy of 93.06 % on the test set, indicating that hyperspectral technology can accurately identify bean varieties, and the study provides a correct method of thinking for the non-destructive classification of multi-species small-sample bean varieties.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.