TMS-induced phase resets depend on TMS intensity and EEG phase.

Brian Erickson, Brian Kim, Philip Sabes, Ryan Rich, Abigail Hatcher, Guadalupe Fernandez-Nuñez, Georgios Mentzelopoulos, Flavia Vitale, John Medaglia
{"title":"TMS-induced phase resets depend on TMS intensity and EEG phase.","authors":"Brian Erickson, Brian Kim, Philip Sabes, Ryan Rich, Abigail Hatcher, Guadalupe Fernandez-Nuñez, Georgios Mentzelopoulos, Flavia Vitale, John Medaglia","doi":"10.1088/1741-2552/ad7f87","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. The phase of the electroencephalographic (EEG) signal predicts performance in motor, somatosensory, and cognitive functions. Studies suggest that brain phase resets align neural oscillations with external stimuli, or couple oscillations across frequency bands and brain regions. Transcranial Magnetic Stimulation (TMS) can cause phase resets noninvasively in the cortex, thus providing the potential to control phase-sensitive cognitive functions. However, the relationship between TMS parameters and phase resetting is not fully understood. This is especially true of TMS intensity, which may be crucial to enabling precise control over the amount of phase resetting that is induced. Additionally, TMS phase resetting may interact with the instantaneous phase of the brain. Understanding these relationships is crucial to the development of more powerful and controllable stimulation protocols.<i>Approach.</i>To test these relationships, we conducted a TMS-EEG study. We applied single-pulse TMS at varying degrees of stimulation intensity to the motor area in an open loop. Offline, we used an autoregressive algorithm to estimate the phase of the intrinsic<i>µ</i>-Alpha rhythm of the motor cortex at the moment each TMS pulse was delivered.<i>Main results</i>. We identified post-stimulation epochs where<i>µ</i>-Alpha phase resetting and N100 amplitude depend parametrically on TMS intensity and are significant<i>versus</i>peripheral auditory sham stimulation. We observed<i>µ</i>-Alpha phase inversion after stimulations near peaks but not troughs in the endogenous<i>µ</i>-Alpha rhythm.<i>Significance</i>. These data suggest that low-intensity TMS primarily resets existing oscillations, while at higher intensities TMS may activate previously silent neurons, but only when endogenous oscillations are near the peak phase. These data can guide future studies that seek to induce phase resetting, and point to a way to manipulate the phase resetting effect of TMS by varying only the timing of the pulse with respect to ongoing brain activity.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad7f87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. The phase of the electroencephalographic (EEG) signal predicts performance in motor, somatosensory, and cognitive functions. Studies suggest that brain phase resets align neural oscillations with external stimuli, or couple oscillations across frequency bands and brain regions. Transcranial Magnetic Stimulation (TMS) can cause phase resets noninvasively in the cortex, thus providing the potential to control phase-sensitive cognitive functions. However, the relationship between TMS parameters and phase resetting is not fully understood. This is especially true of TMS intensity, which may be crucial to enabling precise control over the amount of phase resetting that is induced. Additionally, TMS phase resetting may interact with the instantaneous phase of the brain. Understanding these relationships is crucial to the development of more powerful and controllable stimulation protocols.Approach.To test these relationships, we conducted a TMS-EEG study. We applied single-pulse TMS at varying degrees of stimulation intensity to the motor area in an open loop. Offline, we used an autoregressive algorithm to estimate the phase of the intrinsicµ-Alpha rhythm of the motor cortex at the moment each TMS pulse was delivered.Main results. We identified post-stimulation epochs whereµ-Alpha phase resetting and N100 amplitude depend parametrically on TMS intensity and are significantversusperipheral auditory sham stimulation. We observedµ-Alpha phase inversion after stimulations near peaks but not troughs in the endogenousµ-Alpha rhythm.Significance. These data suggest that low-intensity TMS primarily resets existing oscillations, while at higher intensities TMS may activate previously silent neurons, but only when endogenous oscillations are near the peak phase. These data can guide future studies that seek to induce phase resetting, and point to a way to manipulate the phase resetting effect of TMS by varying only the timing of the pulse with respect to ongoing brain activity.

TMS 诱导的相位复位取决于 TMS 强度和脑电图相位。
目的:脑电图(EEG)信号的相位可预测运动、体感和认知功能的表现。研究表明,大脑相位重置可使神经振荡与外部刺激相一致,或将不同频段和脑区的振荡耦合在一起。经颅磁刺激(TMS)能以非侵入性方式在大脑皮层引起相位重置,从而为控制相位敏感的认知功能提供了可能。然而,TMS 参数与相位重置之间的关系尚未完全明了。TMS 强度尤其如此,它可能是精确控制相位复位诱导量的关键。此外,TMS 相位重置可能与大脑的瞬时相位相互作用。了解这些关系对于开发更强大、更可控的刺激方案至关重要:为了测试这些关系,我们进行了一项 TMS-EEG 研究。我们在开环中对运动区施加不同刺激强度的单脉冲 TMS。在离线状态下,我们使用自回归算法来估算每个 TMS 脉冲发出时运动皮层固有 µ-Alpha 节律的相位:我们确定了µ-Alpha相位重置和N100振幅与TMS强度成参数关系的刺激后时间段,与外周听觉假刺激相比,这些时间段的µ-Alpha相位重置和N100振幅显著。我们在内源性 µ-Alpha 节律的峰值附近而非谷值附近观察到刺激后的µ-Alpha 相位反转:这些数据表明,低强度的 TMS 主要是重置现有的振荡,而在较高强度下,TMS 可能会激活之前沉默的神经元,但只有当内源性振荡接近峰值阶段时才会激活。这些数据可为今后试图诱导相位重置的研究提供指导,并指出了一种方法,即通过改变脉冲与正在进行的大脑活动之间的时间关系来操纵 TMS 的相位重置效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信