{"title":"Understanding selective sensing of human serum albumin using a D–π–A probe: a photophysical and computational approach†","authors":"Anamika Bandyopadhyay and Anupam Bhattacharya","doi":"10.1039/D4TB01229A","DOIUrl":null,"url":null,"abstract":"<p >The human serum albumin (HSA) level is a valuable indicator of an individual's health status. Therefore, its detection/estimation can be used to diagnose several diseases. In this work, we have developed a series of donor–π–acceptor probes, which were found to selectively detect HSA over BSA (bovine serum albumin). Among these probes, <strong>A4</strong>, which bears the trifluoroacetyl group, showed the highest selectivity for HSA, with limits of detection and quantification being 1.36 nM and 2.59 nM, respectively. CD spectroscopy of the HSA–<strong>A4</strong> ensemble indicated an increase in the α-helicity of the protein, while the displacement assays revealed the localization of the probe in the hemin site of HSA. The probe works on the principle of excited state intramolecular charge transfer (ICT). Its selectivity was also validated computationally. Docking experiments confirmed the preference of the probe for the hemin binding IB site of HSA, as observed from the fluorescence displacement assay results, and a comparison of docking scores demonstrated the greater preference of <strong>A4</strong> for HSA compared to BSA. Computational experiments also showed a change in preference for HSA amino acid residues exhibited by the excited state of probe <strong>A4</strong> (Tyr161, Met123, Pro118, and Leu115) when compared to its ground state (Arg186 and His146). Hydrophobic interactions dominated the excited state protein–probe ensemble, whereas there was significant involvement of the water bridges along with the hydrophobic interactions in the ground state ensemble. Probe <strong>A4</strong> was also assessed for its practical utility and found to successfully sense HSA in urine at extremely low concentrations. Moreover, the <strong>A4</strong>–HSA ensemble was employed for hemin sensing with a detection limit of 0.23 μM.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 41","pages":" 10719-10735"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/tb/d4tb01229a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01229a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The human serum albumin (HSA) level is a valuable indicator of an individual's health status. Therefore, its detection/estimation can be used to diagnose several diseases. In this work, we have developed a series of donor–π–acceptor probes, which were found to selectively detect HSA over BSA (bovine serum albumin). Among these probes, A4, which bears the trifluoroacetyl group, showed the highest selectivity for HSA, with limits of detection and quantification being 1.36 nM and 2.59 nM, respectively. CD spectroscopy of the HSA–A4 ensemble indicated an increase in the α-helicity of the protein, while the displacement assays revealed the localization of the probe in the hemin site of HSA. The probe works on the principle of excited state intramolecular charge transfer (ICT). Its selectivity was also validated computationally. Docking experiments confirmed the preference of the probe for the hemin binding IB site of HSA, as observed from the fluorescence displacement assay results, and a comparison of docking scores demonstrated the greater preference of A4 for HSA compared to BSA. Computational experiments also showed a change in preference for HSA amino acid residues exhibited by the excited state of probe A4 (Tyr161, Met123, Pro118, and Leu115) when compared to its ground state (Arg186 and His146). Hydrophobic interactions dominated the excited state protein–probe ensemble, whereas there was significant involvement of the water bridges along with the hydrophobic interactions in the ground state ensemble. Probe A4 was also assessed for its practical utility and found to successfully sense HSA in urine at extremely low concentrations. Moreover, the A4–HSA ensemble was employed for hemin sensing with a detection limit of 0.23 μM.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices