Acceleration waveform reproduction control of hypergravity centrifugal shaking table based on data driven iterative learning control and two-degree-of-freedom control
{"title":"Acceleration waveform reproduction control of hypergravity centrifugal shaking table based on data driven iterative learning control and two-degree-of-freedom control","authors":"Zhu Yang, Haibo Xie","doi":"10.1016/j.isatra.2024.09.013","DOIUrl":null,"url":null,"abstract":"<div><div>The hypergravity centrifugal shaking table (HCST) is the most effective means for studying the disaster effects of rock and soil earthquakes, and the accurate control of acceleration waveform recurrence is the critical problem. This paper compares the dynamic characteristics of the normal gravity shaking table (NGST) and the HCST, highlighting the latter’s particularities, and analyzes the limitations of the existing control strategy. Meanwhile, a hypergravity unidirectional airborne shaking table (HUAST) is designed, and a data-driven iterative learning control and two-degree-of-freedom control-based acceleration waveform reproduction strategy is proposed and experimentally verified.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"155 ","pages":"Pages 373-385"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824004452","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The hypergravity centrifugal shaking table (HCST) is the most effective means for studying the disaster effects of rock and soil earthquakes, and the accurate control of acceleration waveform recurrence is the critical problem. This paper compares the dynamic characteristics of the normal gravity shaking table (NGST) and the HCST, highlighting the latter’s particularities, and analyzes the limitations of the existing control strategy. Meanwhile, a hypergravity unidirectional airborne shaking table (HUAST) is designed, and a data-driven iterative learning control and two-degree-of-freedom control-based acceleration waveform reproduction strategy is proposed and experimentally verified.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.