{"title":"Effect of Bis (methyl glycol) phthalate on endoplasmic reticulum stress in endothelial cells","authors":"Verma Nishitha-Hiresha , Raghavan Varsha , S. Srinidhi , Ravichandran Jayasuriya , Kannan Harithpriya , Paromita Chakraborty , Kunka Mohanram Ramkumar","doi":"10.1016/j.etap.2024.104569","DOIUrl":null,"url":null,"abstract":"<div><div>Phthalate-based polymeric plasticizers are widely used for their durability, transparency, and odorless nature, resulting in human exposure through inhalation, ingestion, or contaminated water. Epidemiological studies have identified bis-phthalate as a potential cardiovascular disease risk factor, though its mechanisms remain unclear. This study investigates the effects of bis-phthalate on endothelial dysfunction (ED), an early event in cardiovascular complications, with a focus on Endoplasmic Reticulum (ER) stress pathways. We observed dose- and time-dependent cytotoxicity in endothelial cells exposed to bis-phthalate, accompanied by elevated expression of ER stress markers (GRP78, IRE-1α, CHOP) and oxidative stress markers (TXNIP, P22phox), as measured by qPCR. Reactive oxygen species (ROS) levels also increased dose-dependently, as determined by H2DCFDA using flow cytometry. These findings suggest that bis-phthalate exposure induces both oxidative and ER stress, leading to the development of ED, providing insights into its potential role in cardiovascular disease progression.</div></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"111 ","pages":"Article 104569"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924002096","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phthalate-based polymeric plasticizers are widely used for their durability, transparency, and odorless nature, resulting in human exposure through inhalation, ingestion, or contaminated water. Epidemiological studies have identified bis-phthalate as a potential cardiovascular disease risk factor, though its mechanisms remain unclear. This study investigates the effects of bis-phthalate on endothelial dysfunction (ED), an early event in cardiovascular complications, with a focus on Endoplasmic Reticulum (ER) stress pathways. We observed dose- and time-dependent cytotoxicity in endothelial cells exposed to bis-phthalate, accompanied by elevated expression of ER stress markers (GRP78, IRE-1α, CHOP) and oxidative stress markers (TXNIP, P22phox), as measured by qPCR. Reactive oxygen species (ROS) levels also increased dose-dependently, as determined by H2DCFDA using flow cytometry. These findings suggest that bis-phthalate exposure induces both oxidative and ER stress, leading to the development of ED, providing insights into its potential role in cardiovascular disease progression.
期刊介绍:
Environmental Toxicology and Pharmacology publishes the results of studies concerning toxic and pharmacological effects of (human and veterinary) drugs and of environmental contaminants in animals and man.
Areas of special interest are: molecular mechanisms of toxicity, biotransformation and toxicokinetics (including toxicokinetic modelling), molecular, biochemical and physiological mechanisms explaining differences in sensitivity between species and individuals, the characterisation of pathophysiological models and mechanisms involved in the development of effects and the identification of biological markers that can be used to study exposure and effects in man and animals.
In addition to full length papers, short communications, full-length reviews and mini-reviews, Environmental Toxicology and Pharmacology will publish in depth assessments of special problem areas. The latter publications may exceed the length of a full length paper three to fourfold. A basic requirement is that the assessments are made under the auspices of international groups of leading experts in the fields concerned. The information examined may either consist of data that were already published, or of new data that were obtained within the framework of collaborative research programmes. Provision is also made for the acceptance of minireviews on (classes of) compounds, toxicities or mechanisms, debating recent advances in rapidly developing fields that fall within the scope of the journal.