{"title":"Site-directed mutagenesis of nattokinase: Unveiling structure-function relationship for enhanced functionality","authors":"Ankush Jain, Pradeep Kumar Anand, Jagdeep Kaur","doi":"10.1016/j.biochi.2024.09.014","DOIUrl":null,"url":null,"abstract":"<div><div>Site-directed mutagenesis was employed to investigate the structure-function relationship of nattokinase (NK) and its effect on the enzymatic activity, thermostability, pH tolerance, and fibrinolytic properties of NK. Specific mutations (T270S, V271I, E262D, and A259T) were introduced within the nk gene, targeting regions predicted to be involved in substrate binding. The NK(E262D) mutant exhibited a significant increase in enzymatic activity (2-fold) and catalytic efficiency (2.2-fold) as assessed by N-Succinyl-Ala-Ala-Pro-Phe p-nitroanilide (Suc-AAPF-pNA) hydrolysis, compared to the wild type. <em>In silico</em> analysis supported these findings, demonstrating lower binding energy for the NK(E262D) mutant, suggesting stronger fibrin affinity. Thermostability assays revealed that NK(E262D) and NK(A259T) displayed exceptional stability, retaining enzyme activity at 60 °C. All mutants exhibited a broader pH tolerance range (pH 5.0–10.0) compared to the wild-type NK. The fibrinolytic activity assay revealed that the E262D mutant possessed the highest fibrinolytic activity (2414 U/mg), surpassing the wild-type. This study reported an NK variant with improved enzymatic activity, thermostability, and fibrinolytic properties.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"229 ","pages":"Pages 1-8"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424002244","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Site-directed mutagenesis was employed to investigate the structure-function relationship of nattokinase (NK) and its effect on the enzymatic activity, thermostability, pH tolerance, and fibrinolytic properties of NK. Specific mutations (T270S, V271I, E262D, and A259T) were introduced within the nk gene, targeting regions predicted to be involved in substrate binding. The NK(E262D) mutant exhibited a significant increase in enzymatic activity (2-fold) and catalytic efficiency (2.2-fold) as assessed by N-Succinyl-Ala-Ala-Pro-Phe p-nitroanilide (Suc-AAPF-pNA) hydrolysis, compared to the wild type. In silico analysis supported these findings, demonstrating lower binding energy for the NK(E262D) mutant, suggesting stronger fibrin affinity. Thermostability assays revealed that NK(E262D) and NK(A259T) displayed exceptional stability, retaining enzyme activity at 60 °C. All mutants exhibited a broader pH tolerance range (pH 5.0–10.0) compared to the wild-type NK. The fibrinolytic activity assay revealed that the E262D mutant possessed the highest fibrinolytic activity (2414 U/mg), surpassing the wild-type. This study reported an NK variant with improved enzymatic activity, thermostability, and fibrinolytic properties.
期刊介绍:
Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English.
Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.