{"title":"An Integrated Electroencephalography and Eye-Tracking Analysis Using eXtreme Gradient Boosting for Mental Workload Evaluation in Surgery.","authors":"Somayeh B Shafiei, Saeed Shadpour, James L Mohler","doi":"10.1177/00187208241285513","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We aimed to develop advanced machine learning models using electroencephalogram (EEG) and eye-tracking data to predict the mental workload associated with engaging in various surgical tasks.</p><p><strong>Background: </strong>Traditional methods of evaluating mental workload often involve self-report scales, which are subject to individual biases. Due to the multidimensional nature of mental workload, there is a pressing need to identify factors that contribute to mental workload across different surgical tasks.</p><p><strong>Method: </strong>EEG and eye-tracking data from 26 participants performing Matchboard and Ring Walk tasks from the da Vinci simulator and the pattern cut and suturing tasks from the Fundamentals of Laparoscopic Surgery (FLS) program were used to develop an eXtreme Gradient Boosting (XGBoost) model for mental workload evaluation.</p><p><strong>Results: </strong>The developed XGBoost models demonstrated strong predictive performance with <i>R</i><sup>2</sup> values of 0.82, 0.81, 0.82, and 0.83 for the Matchboard, Ring Walk, pattern cut, and suturing tasks, respectively. Key features for predicting mental workload included task average pupil diameter, complexity level, average functional connectivity strength at the temporal lobe, and the total trajectory length of the nondominant eye's pupil. Integrating features from both EEG and eye-tracking data significantly enhanced the performance of mental workload evaluation models, as evidenced by repeated-measures t-tests yielding <i>p</i>-values less than 0.05. However, this enhancement was not observed in the Pattern Cut task (repeated-measures t-tests; <i>p</i> > 0.05).</p><p><strong>Conclusion: </strong>The findings underscore the potential for machine learning and multidimensional feature integration to predict mental workload and thereby improve task design and surgical training.</p><p><strong>Application: </strong>The advanced mental workload prediction models could serve as instrumental tools to enhance our understanding of surgeons' cognitive demands and significantly improve the effectiveness of surgical training programs.</p>","PeriodicalId":56333,"journal":{"name":"Human Factors","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00187208241285513","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: We aimed to develop advanced machine learning models using electroencephalogram (EEG) and eye-tracking data to predict the mental workload associated with engaging in various surgical tasks.
Background: Traditional methods of evaluating mental workload often involve self-report scales, which are subject to individual biases. Due to the multidimensional nature of mental workload, there is a pressing need to identify factors that contribute to mental workload across different surgical tasks.
Method: EEG and eye-tracking data from 26 participants performing Matchboard and Ring Walk tasks from the da Vinci simulator and the pattern cut and suturing tasks from the Fundamentals of Laparoscopic Surgery (FLS) program were used to develop an eXtreme Gradient Boosting (XGBoost) model for mental workload evaluation.
Results: The developed XGBoost models demonstrated strong predictive performance with R2 values of 0.82, 0.81, 0.82, and 0.83 for the Matchboard, Ring Walk, pattern cut, and suturing tasks, respectively. Key features for predicting mental workload included task average pupil diameter, complexity level, average functional connectivity strength at the temporal lobe, and the total trajectory length of the nondominant eye's pupil. Integrating features from both EEG and eye-tracking data significantly enhanced the performance of mental workload evaluation models, as evidenced by repeated-measures t-tests yielding p-values less than 0.05. However, this enhancement was not observed in the Pattern Cut task (repeated-measures t-tests; p > 0.05).
Conclusion: The findings underscore the potential for machine learning and multidimensional feature integration to predict mental workload and thereby improve task design and surgical training.
Application: The advanced mental workload prediction models could serve as instrumental tools to enhance our understanding of surgeons' cognitive demands and significantly improve the effectiveness of surgical training programs.
期刊介绍:
Human Factors: The Journal of the Human Factors and Ergonomics Society publishes peer-reviewed scientific studies in human factors/ergonomics that present theoretical and practical advances concerning the relationship between people and technologies, tools, environments, and systems. Papers published in Human Factors leverage fundamental knowledge of human capabilities and limitations – and the basic understanding of cognitive, physical, behavioral, physiological, social, developmental, affective, and motivational aspects of human performance – to yield design principles; enhance training, selection, and communication; and ultimately improve human-system interfaces and sociotechnical systems that lead to safer and more effective outcomes.