Structural and spectroscopic characterization of the peridinin-chlorophyll a-protein (PCP) complex from Heterocapsa pygmaea (HPPCP)

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Tim Schulte , Nikki Cecil M. Magdaong , Marilena Di Valentin , Alessandro Agostini , Claudia E. Tait , Dariusz M. Niedzwiedzki , Donatella Carbonera , Eckhard Hofmann
{"title":"Structural and spectroscopic characterization of the peridinin-chlorophyll a-protein (PCP) complex from Heterocapsa pygmaea (HPPCP)","authors":"Tim Schulte ,&nbsp;Nikki Cecil M. Magdaong ,&nbsp;Marilena Di Valentin ,&nbsp;Alessandro Agostini ,&nbsp;Claudia E. Tait ,&nbsp;Dariusz M. Niedzwiedzki ,&nbsp;Donatella Carbonera ,&nbsp;Eckhard Hofmann","doi":"10.1016/j.bbabio.2024.149510","DOIUrl":null,"url":null,"abstract":"<div><div>Light harvesting proteins are optimized to efficiently collect and transfer light energy for photosynthesis. In eukaryotic dinoflagellates these complexes utilize chlorophylls and a special carotenoid, peridinin, and arrange them for efficient excitation energy transfer. At the same time, the carotenoids protect the system by quenching harmful chlorophyll triplet states. Here we use advanced spectroscopic techniques and X-ray structure analysis to investigate excitation energy transfer processes in the major soluble antenna, the peridinin chlorophyll <em>a</em> protein (PCP) from the free living dinoflagellate <em>Heterocapsa pygmaea</em>. We determined the 3D-structure of this complex at high resolution (1.2 Å). For better comparison, we improved the reference structure of this protein from <em>Amphidinium carterae</em> to a resolution of 1.15 Å. We then used fs and ns time-resolved absorption spectroscopy to study the mechanisms of light harvesting, but also of the photoprotective quenching of the chlorophyll triplet state. The photoprotection site was further characterized by Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy to yield information on water molecules involved in triplet-triplet energy transfer.</div><div>Similar to other PCP complexes, excitation energy transfer from peridinin to chlorophyll is found to be very efficient, with transfer times in the range of 1.6–2.1 ps. One of the four carotenoids, the peridinin 614, is well positioned to quench the chlorophyll triplet state with high efficiency and transfer times in the range of tens of picoseconds. Our structural and dynamic data further support, that the intrinsic water molecule coordinating the chlorophyll Mg ion plays an essential role in photoprotection.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005272824004808","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Light harvesting proteins are optimized to efficiently collect and transfer light energy for photosynthesis. In eukaryotic dinoflagellates these complexes utilize chlorophylls and a special carotenoid, peridinin, and arrange them for efficient excitation energy transfer. At the same time, the carotenoids protect the system by quenching harmful chlorophyll triplet states. Here we use advanced spectroscopic techniques and X-ray structure analysis to investigate excitation energy transfer processes in the major soluble antenna, the peridinin chlorophyll a protein (PCP) from the free living dinoflagellate Heterocapsa pygmaea. We determined the 3D-structure of this complex at high resolution (1.2 Å). For better comparison, we improved the reference structure of this protein from Amphidinium carterae to a resolution of 1.15 Å. We then used fs and ns time-resolved absorption spectroscopy to study the mechanisms of light harvesting, but also of the photoprotective quenching of the chlorophyll triplet state. The photoprotection site was further characterized by Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy to yield information on water molecules involved in triplet-triplet energy transfer.
Similar to other PCP complexes, excitation energy transfer from peridinin to chlorophyll is found to be very efficient, with transfer times in the range of 1.6–2.1 ps. One of the four carotenoids, the peridinin 614, is well positioned to quench the chlorophyll triplet state with high efficiency and transfer times in the range of tens of picoseconds. Our structural and dynamic data further support, that the intrinsic water molecule coordinating the chlorophyll Mg ion plays an essential role in photoprotection.
Heterocapsa pygmaea(HPPCP)的过叶素-叶绿素 a 蛋白(PCP)复合物的结构和光谱特征。
采光蛋白经过优化,能够有效地收集和传递光能,用于光合作用。在真核双鞭毛藻中,这些复合体利用叶绿素和一种特殊的类胡萝卜素(peridinin),并对它们进行排列,以实现高效的激发能量转移。同时,类胡萝卜素通过淬灭有害的叶绿素三重态来保护系统。在这里,我们利用先进的光谱技术和 X 射线结构分析,研究了自由生活的甲藻 Heterocapsa pygmaea 的主要可溶性天线--叶绿素 a 蛋白(PCP)的激发能量转移过程。我们以高分辨率(1.2 Å)测定了该复合物的三维结构。为了更好地进行比较,我们将这种蛋白质的参考结构从 Amphidinium carterae 提高到了 1.15 Å。随后,我们利用fs和ns时间分辨吸收光谱法研究了叶绿素三重态的光收集和光保护淬灭机制。通过电子自旋回波包络调制(ESEEM)光谱,进一步确定了光保护位点的特征,从而获得了参与三重态-三重态能量转移的水分子的信息。与其他五氯苯酚复合物相似,从紫苏素到叶绿素的激发能量转移非常有效,转移时间在 1.6-2.1 ps 之间。在四种类胡萝卜素中,其中一种类胡萝卜素(peridinin 614)可以高效地淬灭叶绿素的三重态,转移时间在几十皮秒之间。我们的结构和动态数据进一步证明,与叶绿素镁离子配位的固有水分子在光保护中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信