{"title":"Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition.","authors":"Jing Wang, Xiaojun Ning, Wei Xu, Yunze Li, Ziyu Jia, Youfang Lin","doi":"10.1016/j.neunet.2024.106742","DOIUrl":null,"url":null,"abstract":"<p><p>Affective brain-computer interface is an important part of realizing emotional human-computer interaction. However, existing objective individual differences among subjects significantly hinder the application of electroencephalography (EEG) emotion recognition. Existing methods still lack the complete extraction of subject-invariant representations for EEG and the ability to fuse valuable information from multiple subjects to facilitate the emotion recognition of the target subject. To address the above challenges, we propose a Multi-source Selective Graph Domain Adaptation Network (MSGDAN), which can better utilize data from different source subjects and perform more robust emotion recognition on the target subject. The proposed network extracts and selects the individual information specific to each subject, where public information refers to subject-invariant components from multi-source subjects. Moreover, the graph domain adaptation network captures both functional connectivity and regional states of the brain via a dynamic graph network and then integrates graph domain adaptation to ensure the invariance of both functional connectivity and regional states. To evaluate our method, we conduct cross-subject emotion recognition experiments on the SEED, SEED-IV, and DEAP datasets. The results demonstrate that the MSGDAN has superior classification performance.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"180 ","pages":"106742"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106742","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Affective brain-computer interface is an important part of realizing emotional human-computer interaction. However, existing objective individual differences among subjects significantly hinder the application of electroencephalography (EEG) emotion recognition. Existing methods still lack the complete extraction of subject-invariant representations for EEG and the ability to fuse valuable information from multiple subjects to facilitate the emotion recognition of the target subject. To address the above challenges, we propose a Multi-source Selective Graph Domain Adaptation Network (MSGDAN), which can better utilize data from different source subjects and perform more robust emotion recognition on the target subject. The proposed network extracts and selects the individual information specific to each subject, where public information refers to subject-invariant components from multi-source subjects. Moreover, the graph domain adaptation network captures both functional connectivity and regional states of the brain via a dynamic graph network and then integrates graph domain adaptation to ensure the invariance of both functional connectivity and regional states. To evaluate our method, we conduct cross-subject emotion recognition experiments on the SEED, SEED-IV, and DEAP datasets. The results demonstrate that the MSGDAN has superior classification performance.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.