Hanmin Guo, Alexander Eckehart Urban, Wing Hung Wong
{"title":"Prioritizing disease-related rare variants by integrating gene expression data.","authors":"Hanmin Guo, Alexander Eckehart Urban, Wing Hung Wong","doi":"10.1371/journal.pgen.1011412","DOIUrl":null,"url":null,"abstract":"<p><p>Rare variants, comprising the vast majority of human genetic variations, are likely to have more deleterious impact in the context of human diseases compared to common variants. Here we present carrier statistic, a statistical framework to prioritize disease-related rare variants by integrating gene expression data. By quantifying the impact of rare variants on gene expression, carrier statistic can prioritize those rare variants that have large functional consequence in the patients. Through simulation studies and analyzing real multi-omics dataset, we demonstrated that carrier statistic is applicable in studies with limited sample size (a few hundreds) and achieves substantially higher sensitivity than existing rare variants association methods. Application to Alzheimer's disease reveals 16 rare variants within 15 genes with extreme carrier statistics. We also found strong excess of rare variants among the top prioritized genes in patients compared to that in healthy individuals. The carrier statistic method can be applied to various rare variant types and is adaptable to other omics data modalities, offering a powerful tool for investigating the molecular mechanisms underlying complex diseases.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011412"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011412","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Rare variants, comprising the vast majority of human genetic variations, are likely to have more deleterious impact in the context of human diseases compared to common variants. Here we present carrier statistic, a statistical framework to prioritize disease-related rare variants by integrating gene expression data. By quantifying the impact of rare variants on gene expression, carrier statistic can prioritize those rare variants that have large functional consequence in the patients. Through simulation studies and analyzing real multi-omics dataset, we demonstrated that carrier statistic is applicable in studies with limited sample size (a few hundreds) and achieves substantially higher sensitivity than existing rare variants association methods. Application to Alzheimer's disease reveals 16 rare variants within 15 genes with extreme carrier statistics. We also found strong excess of rare variants among the top prioritized genes in patients compared to that in healthy individuals. The carrier statistic method can be applied to various rare variant types and is adaptable to other omics data modalities, offering a powerful tool for investigating the molecular mechanisms underlying complex diseases.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.