{"title":"Ni-catalysed remote C(sp3)–H functionalization using chain-walking strategies","authors":"Ciro Romano, Ruben Martin","doi":"10.1038/s41570-024-00649-4","DOIUrl":null,"url":null,"abstract":"The dynamic translocation of a metal catalyst along an alkyl side chain — often coined as ‘chain-walking’ — has opened new retrosynthetic possibilities that enable functionalization at unactivated C(sp3)–H sites. The use of nickel complexes in chain-walking strategies has recently gained considerable momentum owing to their versatility for forging sp3 architectures and their redox promiscuity that facilitates both one-electron or two-electron reaction manifolds. This Review discusses the relevance and impact that these processes might have in synthetic endeavours, including mechanistic considerations when appropriate. Particular emphasis is given to the latest discoveries that leverage the potential of Ni-catalysed chain-walking scenarios for tackling transformations that would otherwise be difficult to accomplish, including the merger of chain-walking with other new approaches such as photoredox catalysis or electrochemical activation. Ni-catalysed chain-walking blossomed as an effective synthetic tool to functionalize C(sp3)–H bonds in hydrocarbon chains. This Review provides a detailed overview of the most recent advances in this field, focusing on site-selective and regioselective manipulations at previously out-of-reach C(sp3)–H sites.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41570-024-00649-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic translocation of a metal catalyst along an alkyl side chain — often coined as ‘chain-walking’ — has opened new retrosynthetic possibilities that enable functionalization at unactivated C(sp3)–H sites. The use of nickel complexes in chain-walking strategies has recently gained considerable momentum owing to their versatility for forging sp3 architectures and their redox promiscuity that facilitates both one-electron or two-electron reaction manifolds. This Review discusses the relevance and impact that these processes might have in synthetic endeavours, including mechanistic considerations when appropriate. Particular emphasis is given to the latest discoveries that leverage the potential of Ni-catalysed chain-walking scenarios for tackling transformations that would otherwise be difficult to accomplish, including the merger of chain-walking with other new approaches such as photoredox catalysis or electrochemical activation. Ni-catalysed chain-walking blossomed as an effective synthetic tool to functionalize C(sp3)–H bonds in hydrocarbon chains. This Review provides a detailed overview of the most recent advances in this field, focusing on site-selective and regioselective manipulations at previously out-of-reach C(sp3)–H sites.
期刊介绍:
Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.