{"title":"The enhancement of anammox by graphene-based and iron-based nanomaterials in performance and mechanisms","authors":"Shu Wang, Kaoming Zhang, Yu Miao, Zhu Wang","doi":"10.1038/s41545-024-00385-8","DOIUrl":null,"url":null,"abstract":"Anaerobic ammonium oxidation (anammox) is a cost-effective biological nitrogen removal technology, yet its time-consuming start-up and significant environmental sensitivity are major barriers to its widespread use. Nonetheless, nanotechnology could provide an innovative approach to address these challenges, and particularly, graphene-based and iron-based nanomaterials have shown remarkable results. Graphene-based nanomaterials are beneficial due to their vast specific surface area, superior electrical conductivity, and strong biocompatibility, while iron-based nanomaterials offer valuable redox potential and are readily accessible. Although many studies have investigated the role of nanomaterials in boosting anammox processes, a deeper understanding of the mechanisms through which nanomaterials promote anammox is essential for practical application. This study provided a comprehensive summary of the latest research on how graphene-based and iron-based nanomaterials improve anammox for nitrogen removal, enhance specific anammox activity (SAA), and increase the growth rate of anammox bacteria. We also discussed their role in enhancing system stability and integrating anammox with other nitrogen removal pathways. The mechanisms by which these nanomaterials enhance anammox are analyzed and compared, focusing on extracellular polymeric substances (EPS) formation, electron transfer, functional genes and enzymes, and quorum sensing (QS). Finally, the study outlined several potential directions for future development, including identifying challenges and proposing solutions.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-16"},"PeriodicalIF":10.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00385-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00385-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anaerobic ammonium oxidation (anammox) is a cost-effective biological nitrogen removal technology, yet its time-consuming start-up and significant environmental sensitivity are major barriers to its widespread use. Nonetheless, nanotechnology could provide an innovative approach to address these challenges, and particularly, graphene-based and iron-based nanomaterials have shown remarkable results. Graphene-based nanomaterials are beneficial due to their vast specific surface area, superior electrical conductivity, and strong biocompatibility, while iron-based nanomaterials offer valuable redox potential and are readily accessible. Although many studies have investigated the role of nanomaterials in boosting anammox processes, a deeper understanding of the mechanisms through which nanomaterials promote anammox is essential for practical application. This study provided a comprehensive summary of the latest research on how graphene-based and iron-based nanomaterials improve anammox for nitrogen removal, enhance specific anammox activity (SAA), and increase the growth rate of anammox bacteria. We also discussed their role in enhancing system stability and integrating anammox with other nitrogen removal pathways. The mechanisms by which these nanomaterials enhance anammox are analyzed and compared, focusing on extracellular polymeric substances (EPS) formation, electron transfer, functional genes and enzymes, and quorum sensing (QS). Finally, the study outlined several potential directions for future development, including identifying challenges and proposing solutions.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.