Surface modification of paper-based microfluidic devices via initiated chemical vapor deposition

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2024-09-30 DOI:10.1039/D4LC00414K
Stacey Bacheller and Malancha Gupta
{"title":"Surface modification of paper-based microfluidic devices via initiated chemical vapor deposition","authors":"Stacey Bacheller and Malancha Gupta","doi":"10.1039/D4LC00414K","DOIUrl":null,"url":null,"abstract":"<p >Paper-based microfluidic devices offer an ideal platform for biological and environmental detection because they are low-cost, small, disposable, and fill by natural capillary action. In this tutorial review, we discuss the surface modification of paper-based microfluidic devices with functional polymers using the initiated chemical vapor deposition (iCVD) process. The iCVD process is solventless and therefore ideal for coating cellulose paper because there are no surface tension effects or solvent compatibility issues. The process can also be scaled up for roll-to-roll manufacturing. The chemical functionality of the iCVD coating can be tuned by varying the monomer and the structure of the coating can be tuned by varying the processing parameters.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00414k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Paper-based microfluidic devices offer an ideal platform for biological and environmental detection because they are low-cost, small, disposable, and fill by natural capillary action. In this tutorial review, we discuss the surface modification of paper-based microfluidic devices with functional polymers using the initiated chemical vapor deposition (iCVD) process. The iCVD process is solventless and therefore ideal for coating cellulose paper because there are no surface tension effects or solvent compatibility issues. The process can also be scaled up for roll-to-roll manufacturing. The chemical functionality of the iCVD coating can be tuned by varying the monomer and the structure of the coating can be tuned by varying the processing parameters.

Abstract Image

Abstract Image

通过化学气相沉积对纸质微流控设备进行表面改性
纸基微流体设备成本低、体积小、可一次性使用,并可通过自然毛细作用进行填充,因此为生物和环境检测提供了理想的平台。在这篇教程综述中,我们将讨论利用引发化学气相沉积(iCVD)工艺用功能聚合物对纸基微流控设备进行表面改性的问题。iCVD 工艺无溶剂,因此是纤维素纸涂层的理想选择,因为它不存在表面张力效应或溶剂兼容性问题。该工艺还可以放大,用于卷对卷生产。iCVD 涂层的化学功能可通过改变单体来调整,涂层的结构可通过改变加工参数来调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信