Boyuan Feng , Jiaming Zhong , Yunchen Fu , Wen Yang , Zezhou Li , Jiawei Bao , Yangwei Wang , Huamin Zhou , Robert O. Ritchie , Xudong Liang , Wei Huang
{"title":"Energy absorption strategy in biological and bioinspired tubular and lamellar structures","authors":"Boyuan Feng , Jiaming Zhong , Yunchen Fu , Wen Yang , Zezhou Li , Jiawei Bao , Yangwei Wang , Huamin Zhou , Robert O. Ritchie , Xudong Liang , Wei Huang","doi":"10.1016/j.matt.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>Energy absorption capability is critical in biological and engineering materials, particularly when subjected to extreme compressive and impact loading. In the current work, we demonstrate how natural biological materials, like horns and hooves, control crack generation and propagation through lamellar and tubular structural designs. Inspired by these biological tissues, lamellar and tubular structures were fabricated via multi-material three-dimensional (3D) printing. The resulting bioinspired structures exhibit an impressive energy absorption density of ∼18.75 kJ kg<sup>−1</sup>, comparable to the performance of metal foams and bioinspired honeycomb structures. Introducing soft-hard interfaces in lamellar and tubules notably enhances impact energy absorption by approximately 167% compared to solid structures printed with a single material. The bioinspired structures maintain structural integrity even under high-strain-rate impacts of around 2,000 s<sup>−1</sup>, showcasing resistance to deformation and catastrophic failure. This bioinspired approach allows for a combined energy absorption capability in quasi-static compression and high-strain-rate impact scenarios.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 1","pages":"Article 101862"},"PeriodicalIF":17.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524004843","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Energy absorption capability is critical in biological and engineering materials, particularly when subjected to extreme compressive and impact loading. In the current work, we demonstrate how natural biological materials, like horns and hooves, control crack generation and propagation through lamellar and tubular structural designs. Inspired by these biological tissues, lamellar and tubular structures were fabricated via multi-material three-dimensional (3D) printing. The resulting bioinspired structures exhibit an impressive energy absorption density of ∼18.75 kJ kg−1, comparable to the performance of metal foams and bioinspired honeycomb structures. Introducing soft-hard interfaces in lamellar and tubules notably enhances impact energy absorption by approximately 167% compared to solid structures printed with a single material. The bioinspired structures maintain structural integrity even under high-strain-rate impacts of around 2,000 s−1, showcasing resistance to deformation and catastrophic failure. This bioinspired approach allows for a combined energy absorption capability in quasi-static compression and high-strain-rate impact scenarios.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.