{"title":"Simultaneously mapping the 3D distributions of multiple heavy metals in an industrial site using deep learning and multisource auxiliary data","authors":"Yuxuan Peng, Yongcun Zhao, Jian Chen, Enze Xie, Guojing Yan, Tingrun Zou, Xianghua Xu","doi":"10.1016/j.jhazmat.2024.136000","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) distributions of multiple soil pollutants in industrial site are crucial for risk assessment and remediation. Yet, their 3D prediction accuracies are often low because of the strong variability of pollutants and availability of 3D covariate data. This study proposed a patch-based multi-task convolution neural network (MT-CNN) model for simultaneously predicting the 3D distributions of Zn, Pb, Ni, and Cu at an industrial site. By integrating neighborhood patches from multisource covariates, the MT-CNN model captured both horizontal and vertical pollution information, and outperformed the widely-used methods such as random forest (RF), ordinary Kriging (OK), and inverse distance weighting (IDW) for all the 4 heavy metals, with R<sup>2</sup> values of 0.58, 0.56, 0.29 and 0.23 for Zn, Pb, Ni and Cu, respectively. Besides, the MT-CNN model achieved more stable predictions with reasonable accuracy, in comparison with the single-task CNN model. These results highlighted the potential of the proposed MT-CNN in simultaneously mapping the 3D distributions of multiple pollutants, while balancing the model training, maintaining and accuracy for low-cost rapid assessment of soil pollution at industrial sites.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"37 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136000","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) distributions of multiple soil pollutants in industrial site are crucial for risk assessment and remediation. Yet, their 3D prediction accuracies are often low because of the strong variability of pollutants and availability of 3D covariate data. This study proposed a patch-based multi-task convolution neural network (MT-CNN) model for simultaneously predicting the 3D distributions of Zn, Pb, Ni, and Cu at an industrial site. By integrating neighborhood patches from multisource covariates, the MT-CNN model captured both horizontal and vertical pollution information, and outperformed the widely-used methods such as random forest (RF), ordinary Kriging (OK), and inverse distance weighting (IDW) for all the 4 heavy metals, with R2 values of 0.58, 0.56, 0.29 and 0.23 for Zn, Pb, Ni and Cu, respectively. Besides, the MT-CNN model achieved more stable predictions with reasonable accuracy, in comparison with the single-task CNN model. These results highlighted the potential of the proposed MT-CNN in simultaneously mapping the 3D distributions of multiple pollutants, while balancing the model training, maintaining and accuracy for low-cost rapid assessment of soil pollution at industrial sites.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.