{"title":"A human organoid drug screen identifies α2-adrenergic receptor signaling as a therapeutic target for cartilage regeneration","authors":"Xiaocui Wei, Jingyang Qiu, Ruijun Lai, Tiantian Wei, Zhijie Lin, Shijiang Huang, Yuanjun Jiang, Zhanpeng Kuang, Hao Zeng, Yan Gong, Xiaoling Xie, Jun Yang, Yue Zhang, Sheng Zhang, Zhipeng Zou, Xuefei Gao, Xiaochun Bai","doi":"10.1016/j.stem.2024.09.001","DOIUrl":null,"url":null,"abstract":"Directed differentiation of stem cells toward chondrogenesis <em>in vitro</em> and <em>in situ</em> to regenerate cartilage suffers from off-target differentiation and hypertrophic tendency. Here, we generated a cartilaginous organoid system from human expanded pluripotent stem cells (hEPSCs) carrying a COL2A1<sup>mCherry</sup> and COL10A1<sup>eGFP</sup> double reporter, enabling real-time monitoring of chondrogenesis and hypertrophy. After screening 2,040 FDA-approved drugs, we found that α-adrenergic receptor (α-AR) antagonists, especially phentolamine, stimulated chondrogenesis but repressed hypertrophy, while α2-AR agonists reduced chondrogenesis and induced hypertrophy. Phentolamine prevented cartilage degeneration in hEPSC cartilaginous organoid and human cartilage explant models and stimulated microfracture-activated endogenous skeletal stem cells toward hyaline-like cartilage regeneration without fibrotic degeneration <em>in situ</em>. Mechanistically, α2-AR signaling induced hypertrophic degeneration via cyclic guanosine monophosphate (cGMP)-dependent secretory leukocyte protease inhibitor (SLPI) production. SLPI-deleted cartilaginous organoid was degeneration resistant, facilitating large cartilage defect healing. Ultimately, targeting α2-AR/SLPI was a promising and clinically feasible strategy to regenerate cartilage via promoting chondrogenesis and repressing hypertrophy.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"40 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.09.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Directed differentiation of stem cells toward chondrogenesis in vitro and in situ to regenerate cartilage suffers from off-target differentiation and hypertrophic tendency. Here, we generated a cartilaginous organoid system from human expanded pluripotent stem cells (hEPSCs) carrying a COL2A1mCherry and COL10A1eGFP double reporter, enabling real-time monitoring of chondrogenesis and hypertrophy. After screening 2,040 FDA-approved drugs, we found that α-adrenergic receptor (α-AR) antagonists, especially phentolamine, stimulated chondrogenesis but repressed hypertrophy, while α2-AR agonists reduced chondrogenesis and induced hypertrophy. Phentolamine prevented cartilage degeneration in hEPSC cartilaginous organoid and human cartilage explant models and stimulated microfracture-activated endogenous skeletal stem cells toward hyaline-like cartilage regeneration without fibrotic degeneration in situ. Mechanistically, α2-AR signaling induced hypertrophic degeneration via cyclic guanosine monophosphate (cGMP)-dependent secretory leukocyte protease inhibitor (SLPI) production. SLPI-deleted cartilaginous organoid was degeneration resistant, facilitating large cartilage defect healing. Ultimately, targeting α2-AR/SLPI was a promising and clinically feasible strategy to regenerate cartilage via promoting chondrogenesis and repressing hypertrophy.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.