Tyler C. Coverdale, Peter B. Boucher, Jenia Singh, Todd M. Palmer, Jacob R. Goheen, Robert M. Pringle, Andrew B. Davies
{"title":"Herbivore regulation of savanna vegetation: Structural complexity, diversity, and the complexity–diversity relationship","authors":"Tyler C. Coverdale, Peter B. Boucher, Jenia Singh, Todd M. Palmer, Jacob R. Goheen, Robert M. Pringle, Andrew B. Davies","doi":"10.1002/ecm.1624","DOIUrl":null,"url":null,"abstract":"<p>Large mammalian herbivores exert strong top-down control on plants, which in turn influence most ecological processes. Accordingly, the decline, displacement, or extinction of wild large herbivores in African savannas is expected to alter the physical structure of vegetation, the diversity of plant communities, and downstream ecosystem functions. However, herbivore impacts on vegetation comprise both direct and indirect effects and often depend on herbivore body size and plant type. Understanding how herbivores affect savanna vegetation requires disaggregating the effects of different herbivores and the responses of different plants, as well as accounting for both the structural complexity and composition of plant assemblages. We combined high-resolution Light Detection and Ranging (LiDAR) with field measurements from size-selective herbivore exclosures in Kenya to determine how herbivores affect the diversity and physical structure of vegetation, how these impacts vary with body size and plant type, and whether there are predictable associations between plant diversity and structural complexity. Herbivores generally reduced the diversity and abundance of both overstory and understory plants, though the magnitude of these impacts varied substantially as a function of body size and plant type: only megaherbivores (elephants and giraffes) affected tree cover, whereas medium- and small-bodied herbivores had stronger effects on herbaceous diversity and abundance. We also found evidence that herbivores altered the strength and direction of interactions between trees and herbaceous plants, with signatures of facilitation in the presence of herbivores and of competition in their absence. While megaherbivores uniquely affected tree structure, medium- and small-bodied species had stronger (and complementary) effects on metrics of herbaceous vegetation structure. Plant structural responses to herbivore exclusion were species-specific: of five dominant tree species, just three exhibited significant individual morphological variation across exclosure treatments, and the size class of herbivores responsible for these effects varied across species. Irrespective of exclosure treatment, more species-rich plant communities were more structurally complex. We conclude that the diversity and architecture of savanna vegetation depend on consumptive and nonconsumptive plant–herbivore interactions; the roles of herbivore diversity, body size, and plant traits in mediating those interactions; and a positive feedback between plant diversity and structural complexity.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1624","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Large mammalian herbivores exert strong top-down control on plants, which in turn influence most ecological processes. Accordingly, the decline, displacement, or extinction of wild large herbivores in African savannas is expected to alter the physical structure of vegetation, the diversity of plant communities, and downstream ecosystem functions. However, herbivore impacts on vegetation comprise both direct and indirect effects and often depend on herbivore body size and plant type. Understanding how herbivores affect savanna vegetation requires disaggregating the effects of different herbivores and the responses of different plants, as well as accounting for both the structural complexity and composition of plant assemblages. We combined high-resolution Light Detection and Ranging (LiDAR) with field measurements from size-selective herbivore exclosures in Kenya to determine how herbivores affect the diversity and physical structure of vegetation, how these impacts vary with body size and plant type, and whether there are predictable associations between plant diversity and structural complexity. Herbivores generally reduced the diversity and abundance of both overstory and understory plants, though the magnitude of these impacts varied substantially as a function of body size and plant type: only megaherbivores (elephants and giraffes) affected tree cover, whereas medium- and small-bodied herbivores had stronger effects on herbaceous diversity and abundance. We also found evidence that herbivores altered the strength and direction of interactions between trees and herbaceous plants, with signatures of facilitation in the presence of herbivores and of competition in their absence. While megaherbivores uniquely affected tree structure, medium- and small-bodied species had stronger (and complementary) effects on metrics of herbaceous vegetation structure. Plant structural responses to herbivore exclusion were species-specific: of five dominant tree species, just three exhibited significant individual morphological variation across exclosure treatments, and the size class of herbivores responsible for these effects varied across species. Irrespective of exclosure treatment, more species-rich plant communities were more structurally complex. We conclude that the diversity and architecture of savanna vegetation depend on consumptive and nonconsumptive plant–herbivore interactions; the roles of herbivore diversity, body size, and plant traits in mediating those interactions; and a positive feedback between plant diversity and structural complexity.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.