Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xinlong Ma, Haibin Yin, Zhengtian Pu, Xinyan Zhang, Sunpei Hu, Tao Zhou, Weizhe Gao, Laihao Luo, Hongliang Li, Jie Zeng
{"title":"Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis","authors":"Xinlong Ma, Haibin Yin, Zhengtian Pu, Xinyan Zhang, Sunpei Hu, Tao Zhou, Weizhe Gao, Laihao Luo, Hongliang Li, Jie Zeng","doi":"10.1038/s41467-024-52702-x","DOIUrl":null,"url":null,"abstract":"<p>Acetone serves as an important solvent and building block for the chemical industry, but the current industrial synthesis of acetone is generally accompanied by the energy-intensive and costly cumene process used for phenol production. Here we propose a sustainable route for acetone synthesis via propane wet reforming at a moderate temperature of 350 <sup>o</sup>C with the use of platinum-tin nanoparticles supported on γ-aluminium oxide (PtSn/γ-Al<sub>2</sub>O<sub>3</sub>) as catalyst. We achieve an acetone productivity of 858.4 μmol/g with a selectivity of 57.8% among all carbon-based products and 99.3% among all liquid products. Detailed spectroscopic and controlled experiments reveal that the acetone is formed through a tandem catalytic process involving propene and isopropanol as intermediates. We also demonstrate facile ketone synthesis via wet reforming with the use of different alkanes (<i>e.g</i>., n-butane, n-pentane, n-hexane, n-heptane, and n-octane) as substrates, proving the wide applicability of this strategy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52702-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Acetone serves as an important solvent and building block for the chemical industry, but the current industrial synthesis of acetone is generally accompanied by the energy-intensive and costly cumene process used for phenol production. Here we propose a sustainable route for acetone synthesis via propane wet reforming at a moderate temperature of 350 oC with the use of platinum-tin nanoparticles supported on γ-aluminium oxide (PtSn/γ-Al2O3) as catalyst. We achieve an acetone productivity of 858.4 μmol/g with a selectivity of 57.8% among all carbon-based products and 99.3% among all liquid products. Detailed spectroscopic and controlled experiments reveal that the acetone is formed through a tandem catalytic process involving propene and isopropanol as intermediates. We also demonstrate facile ketone synthesis via wet reforming with the use of different alkanes (e.g., n-butane, n-pentane, n-hexane, n-heptane, and n-octane) as substrates, proving the wide applicability of this strategy.

Abstract Image

在 γ-Al2O3 上的 PtSn 纳米粒子上进行丙烷湿重整以合成丙酮
丙酮是化学工业的重要溶剂和基础材料,但目前丙酮的工业合成一般都伴随着用于生产苯酚的高能耗、高成本的积烯工艺。在此,我们提出了一条可持续的丙酮合成路线,即以铂锡纳米粒子为载体,以γ-氧化铝(PtSn/γ-Al2O3)为催化剂,在 350 摄氏度的适度温度下通过丙烷湿重整合成丙酮。我们的丙酮生产率达到 858.4 μmol/g,在所有碳基产物中的选择性为 57.8%,在所有液态产物中的选择性为 99.3%。详细的光谱和控制实验显示,丙酮是通过以丙烯和异丙醇为中间体的串联催化过程形成的。我们还展示了以不同的烷烃(如正丁烷、正戊烷、正己烷、正庚烷和正辛烷)为底物,通过湿重整轻松合成酮的过程,证明了这一策略的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信